Name:	Dr JBO
Student ID Number:	Model Answer
Section: 01/02 A/B	
Lecturer: Dr. Jamaludin Bin Omar	

EEEB273 - Quiz 3 SEMESTER 2, ACADEMIC YEAR 2015/2016

Date: 30 November 2015 Time: 15 minutes

Question:

Refer to Figure 1. $V^+ = +5$ V and $V^- = -5$ V. Assume $V_{BE}(on) = 0.7$ V, $V_A = \infty$, and $\beta = \infty$ for all transistors in the circuit.

For $R_C = 2 \text{ k}\Omega$ and $v_{CM} = v_{B1} = v_{B2} = 0.5 \text{ V}$, determine the value of I_Q such that $V_{CE1} = 2.5 \text{ V}$. Write your answers clearly using PEN, with proper Units for the parameters.

> [2] [1]

[10 marks]

 $i_{C} = I_{S} e^{v_{BE}/V_{T}}; \text{npn}$ $i_{C} = I_{S} e^{v_{EB}/V_{T}}; \text{pnp}$ $i_{C} = \alpha i_{E} = \beta i_{B}$ $i_{E} = i_{B} + i_{C}$ $\alpha = \frac{\beta}{\beta + 1}$

;Small signal

$$\beta = g_m r_\pi$$

$$r_\pi = \frac{\beta V_T}{I_{CQ}}$$

$$g_m = \frac{I_{CQ}}{V_T}$$

$$r_o = \frac{V_A}{I_{CQ}}$$

Figure 1

Answer:

$$v_{C1} = v_{B1} - V_{BE1}(\text{on}) + V_{CE1}$$

= 0.5 - 0.7 + 2.5 = 2.3 V

$$\begin{array}{ll} v_{C1} &= V^+ - i_{C1} R_C \\ i_{C1} &= (V^+ - v_{C1})/R_C \\ &= (5 - 2.3)/2k \end{array} = 1.35 \text{ mA} \qquad [1]$$

When
$$v_{B1} = v_{B2} = 0.5$$
 V and $\beta = \infty$:
 $i_{C1} = i_{C2} = i_{E1} = i_{E2}$ [1]
 $I_Q = i_{E1} + i_{E2} = 2.7$ mA [3]

Name:	Dr JBO
Student ID Number:	Model Answer
Section: 01/02 A/B	
Lecturer: Dr. Jamaludin Bin Omar	

EEEB273 - Quiz 3 SEMESTER 2, ACADEMIC YEAR 2015/2016 Date: 30 November 2015 Time: 15 minutes

Question:

Refer to Figure 1. $V^+ = +5.5$ V and $V^- = -5.5$ V. Assume $V_{BE}(on) = 0.7$ V, $V_A = \infty$, and $\beta = \infty$ for all transistors in the circuit.

For $R_C = 2.2 \text{ k}\Omega$ and $v_{CM} = v_{B1} = v_{B2} = 0.5 \text{ V}$, determine the value of I_Q such that $V_{CE2} = 2.3 \text{ V}$. Write your answers clearly using PEN, with proper Units for the parameters.

[2] [1]

[1]

[10 marks]

$$i_{C} = I_{S} e^{v_{BE}/V_{T}}; \text{npn}$$
$$i_{C} = I_{S} e^{v_{EB}/V_{T}}; \text{pnp}$$
$$i_{C} = \alpha i_{E} = \beta i_{B}$$
$$i_{E} = i_{B} + i_{C}$$
$$\alpha = \frac{\beta}{\beta + 1}$$

;Small signal

$$\beta = g_m r_\pi$$

$$r_\pi = \frac{\beta V_T}{I_{CQ}}$$

$$g_m = \frac{I_{CQ}}{V_T}$$

$$r_o = \frac{V_A}{I_{CQ}}$$

Answer:

$$v_{C2} = v_{B2} - V_{BE2}(\text{on}) + V_{CE2}$$

= 0.5 - 0.7 + 2.3 = 2.1 V

Figure 1

$$v_{C2} = V^{+} - i_{C2} R_{C}$$

$$i_{C2} = (V^{+} - v_{C2})/R_{C}$$

$$= (5.5 - 2.1)/2.2k = 1.545 \text{ mA}$$
[1]

When
$$v_{B1} = v_{B2} = 0.5$$
 V and $\beta = \infty$:
 $i_{C2} = i_{C1} = i_{E1} = i_{E2}$ [1]
 $I_Q = i_{E1} + i_{E2} = 3.09$ mA [3]

Name:	Dr JBO
Student ID Number:	Model Answer
Section: 01/02 A/B	
Lecturer: Dr. Jamaludin Bin Omar	

EEEB273 - Quiz 3 SEMESTER 2, ACADEMIC YEAR 2015/2016 Date: 30 November 2015 Time: 15 minutes

Question:

Refer to Figure 1. $V^+ = +5.5$ V and $V^- = -5.5$ V. Assume $V_{BE}(on) = 0.7$ V, $V_A = \infty$, and $\beta = \infty$ for all transistors in the circuit.

For $R_C = 2.4 \text{ k}\Omega$ and $v_{CM} = v_{B1} = v_{B2} = 0.3 \text{ V}$, determine the value of I_Q such that $V_{CE1} = 2.3 \text{ V}$. Write your answers clearly using PEN, with proper Units for the parameters.

> [2] [1]

> [2] [1]

[10 marks]

 $i_{C} = I_{S} e^{v_{BE}/V_{T}}; \text{npn}$ $i_{C} = I_{S} e^{v_{EB}/V_{T}}; \text{pnp}$ $i_{C} = \alpha i_{E} = \beta i_{B}$ $i_{E} = i_{B} + i_{C}$ $\alpha = \frac{\beta}{\beta + 1}$

;Small signal

$$\beta = g_m r_\pi$$

$$r_\pi = \frac{\beta V_T}{I_{CQ}}$$

$$g_m = \frac{I_{CQ}}{V_T}$$

$$r_o = \frac{V_A}{I_{CQ}}$$

Answer:

$$v_{C1} = v_{B1} - V_{BE1}(on) + V_{CE1}$$

= 0.3 - 0.7 + 2.3 = 1.9 V

Figure 1

$$\begin{aligned} v_{C1} &= V^{+} - i_{C1} R_{C} \\ i_{C1} &= (V^{+} - v_{C1}) / R_{C} \\ &= (5.5 - 1.9) / 2.4 k = 1.5 \text{ mA} \end{aligned}$$

When
$$v_{B1} = v_{B2} = 0.3$$
 V and $\beta = \infty$:
 $i_{C1} = i_{C2} = i_{E1} = i_{E2}$ [1]
 $I_Q = i_{E1} + i_{E2} = 3.0$ mA [3]

Name:	Dr JBO	
Student ID Number:	Model Answer	
Section: 01/02 A/B		
Lecturer: Dr. Jamaludin Bin Omar		

EEEB273 - Quiz 3

SEMESTER 2, ACADEMIC YEAR 2015/2016 Date: 30 November 2015 Time: 15 minutes

Question:

Refer to Figure 1. $V^+ = +5$ V and $V^- = -5$ V. Assume $V_{BE}(on) = 0.7$ V, $V_A = \infty$, and $\beta = \infty$ for all transistors in the circuit.

For $R_C = 2.2 \text{ k}\Omega$ and $v_{CM} = v_{B1} = v_{B2} = 0.3 \text{ V}$, determine the value of I_Q such that $V_{CE2} = 2.6 \text{ V}$. Write your answers clearly using PEN, with proper Units for the parameters.

1

[10 marks]

 $i_C = I_S e^{v_{BE}/V_T}$; npn $i_C = I_S e^{v_{EB}/V_T}$; pnp $i_C = \alpha i_E = \beta i_B$ $i_E = i_B + i_C$ $\alpha = \frac{\beta}{\beta + 1}$

;Small signal

$$\beta = g_m r_\pi$$

$$r_\pi = \frac{\beta V_T}{I_{CQ}}$$

$$g_m = \frac{I_{CQ}}{V_T}$$

$$r_o = \frac{V_A}{I_{CQ}}$$

Answer:

$$v_{C2} = v_{B2} - V_{BE2}(\text{on}) + V_{CE2}$$
[2]
= 0.3 - 0.7 + 2.6 = 2.2 V [1]

Figure 1

$$\begin{array}{ll} v_{C2} &= V^+ - i_{C2} R_C \\ i_{C2} &= (V^+ - v_{C2})/R_C \\ &= (5 - 2.2)/2.2 k \\ \end{array}$$
[2]

When
$$v_{B1} = v_{B2} = 0.3$$
 V and $\beta = \infty$:
 $i_{C2} = i_{C1} = i_{E1} = i_{E2}$ [1]
 $I_Q = i_{E1} + i_{E2} = 2.545$ mA [3]