Name:

Student ID Number:

Section:

Lecturer: Dr Azni Wati/ Dr Jehana Ermy/

Dr Jamaludin

Table Number:

College of Engineering

Department of Electronics and Communication Engineering

Test 2

SEMESTER 2, ACADEMIC YEAR 2015/2016

Subject Code	:	EEEB273
Course Title	:	Electronics Analysis & Design II
Date	:	9 January 2016
Time Allowed	:	1 hour 45 minutes

Instructions to the candidates:

- 1. Write your Name and Student ID number. Circle Lecturer for your section.
- 2. Write all your answers using pen. DO NOT USE PENCIL except for the diagram.
- 3. ANSWER ALL QUESTIONS.
- 4. WRITE YOUR ANSWER ON THIS QUESTION PAPER.

NOTE: DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO.

Question Number	Q1	Q2	Q3	Total
Marks				

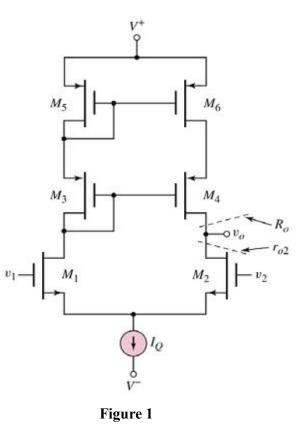

<u>Question 1</u> [40 marks]

Figure 1 shows a MOSFET differential amplifier with active load circuit biased with constant current source I_Q . It is given that $V^+ = 10$ V, V = -10 V, and $I_Q = 0.23$ mA.

Also, the NMOS transistor parameters are: $V_{TN} = 1 \text{ V}$, $k'_n = 100 \text{ }\mu\text{A/V}^2$ and $\lambda_n = 0.015 \text{ V}^{-1}$, and the PMOS transistor parameters are: $V_{TP} = -1 \text{ V}$, $k'_p = 80 \text{ }\mu\text{A/V}^2$ and $\lambda_p = 0.01 \text{ V}^{-1}$. Given that the transistorsø aspect ratios $(W/L)_{1-2} = 5$ and $(W/L)_{3-6} = 10$.

- (a) State the function of each transistor M_1 to M_6 in the Figure 1. [6 marks]
- (b) **Determine** the maximum **common-mode voltage input**, $v_{cm}(max)$, that can be applied such that the transistors are still biased in saturation region. [8 marks]
- (c) Draw the ac equivalent circuit for the differential-mode input $(v_1 = +v_d/2 \text{ and } v_2 = v_d/2)$. Indicate the resultant ac currents in all transistors. [6 marks]
- (d) **Determine** the output resistance *Ro* in the Figure 1. [8 marks]
- (e) **Calculate** the differential-mode voltage gain (A_d) of the diff-amp. [8 marks]
- (f) **Comment** how the output resistance of the diff-amp can be changed. [4 marks]

Answers for Question 1

Answer for Question 1 (Cont.)

Answer for Question 1 (Cont.)

Answers:

<u>Question 2</u> [30 marks]

The circuit in Figure 2 shows a Darlington pair emitter-follower configuration. Assume $\beta = 120$ for all NPN transistors and $\beta = 90$ for all PNP transistors. Let $V_{A7} = 60$ V for Q_7 , $V_{A11} = 120$ V for Q_{11} , and $V_A = \infty$ for all other transistors.

Given that $R_3 = 200 \Omega$, $R_4 = 5 k\Omega$, $I_{C7} = I_{C11} = 0.25 mA$, and $I_{C8} = 1 mA$.

- (a) **Calculate** the value of R_i of the circuit in the Figure 2. [10 marks]
- (b) Find the value of *R*₀ of the circuit in the Figure 2.

[20 marks]

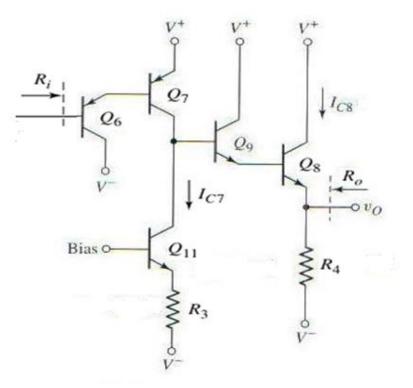
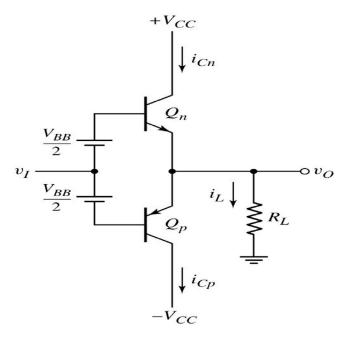


Figure 2

Answer for Question 2


Answer for Question 2 (Cont.)

<u>Question 3</u> [30 marks]

Figure 3 shows a simplified class-AB output stage with BJTs. The circuit parameters are $V_{CC} = 5$ Volts and $R_L = 1 \text{ k}\Omega$. The saturation current is $I_S = 2 \times 10^{-15} \text{ A}$.

- (a) When $v_I = 0$, calculate the value for V_{BB} that gives $i_{Cn} = i_{Cp} = 1$ mA. [6 marks]
- (b) Find the power dissipated in transistors Q_n and Q_p when $v_I = 0$. [3 marks]
- (c) **Determine** i_L , i_{Cn} , i_{Cp} , and v_I if $v_0 = -3.5$ V. [12 marks]
- (d) Based on answers in **part (c)**, **calculate** the power dissipated in Q_n , Q_p , and R_L . [9 marks]

Answer for Question 3

Answer for Question 3 (Cont.)

BASIC FORMULA FOR TRANSISTOR

<u>BJT</u>

$$i_{C} = I_{S} e^{v_{BE}/V_{T}}; \text{npn}$$
$$i_{C} = I_{S} e^{v_{EB}/V_{T}}; \text{pnp}$$
$$i_{C} = \alpha i_{E} = \beta i_{B}$$
$$i_{E} = i_{B} + i_{C}$$
$$\alpha = \frac{\beta}{\beta + 1}$$

;Small signal

$$\beta = g_m r_{\pi}$$
$$g_m = \frac{I_{CQ}}{V_T}$$
$$r_{\pi} = \frac{\beta V_T}{I_{CQ}}$$
$$r_o = \frac{V_A}{I_{CQ}}$$
$$V_T = 26 \text{ mV}$$

MOSFET

; N – MOSFET

$$v_{DS}$$
 (sat) = $v_{GS} - V_{TN}$
 $i_D = K_n [v_{GS} - V_{TN}]^2$
 $K_n = \frac{k'_n}{2} \cdot \frac{W}{L}$

; P – MOSFET $v_{SD}(\text{sat}) = v_{SG} + V_{TP}$ $i_D = K_p [v_{SG} + V_{TP}]^2$ $K_p = \frac{k'_p}{2} \cdot \frac{W}{L}$

;Small signal $g_m = 2\sqrt{K_{?}I_{DQ}}$ $r_o \cong \frac{1}{\lambda I_{DQ}}$