

# COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION

## **SEMESTER 1 2016 / 2017**

PROGRAMME : Bachelor of Electrical & Electronics Engineering (Honours)

Bachelor of Electrical Power Engineering (Honours)

SUBJECT CODE : EEEB273

SUBJECT : ELECTRONIC ANALYSIS AND DESIGN II

DATE : September 2016

TIME : 3 Hours

#### **INSTRUCTIONS TO CANDIDATES:**

- 1. This paper contains **FIVE** (5) questions.
- 2. Answer **ALL** questions.
- 3. Write all answers in the answer booklet provided. Use pen to write your answer.
- 4. Write answer to different question on a new page.

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PRINTED PAGES INCLUDING THIS COVER PAGE.

#### **QUESTION 1 [20 MARKS]**

(a) Consider the Widlar current-source circuit with multiple output shown in Figure 1. Assume that  $V_{BE1}(\mathbf{on}) = 0.7$  V. The circuit parameters are  $R_1 = 10$  k $\Omega$ ,  $R_{E2} = 1$  k $\Omega$ , and  $R_{E3} = 2$  k $\Omega$ . Calculate  $I_{REF}$ ,  $I_{O2}$ , and  $I_{O3}$ . [10 marks]



Figure 1

(b) The circuit shown in **Figure 2** has circuit and transistor parameters as  $V^+ = +3$  V, V = -3 V,  $R_D = 360 \text{ k}\Omega$ ,  $V_{TP} = -0.4$  V,  $K_p = 30 \mu\text{A/V}^2$ , and  $\lambda = 0$ . The bias current is given as  $I_Q = 12 \mu\text{A}$ . Calculate **voltage**  $V_{SD1}$  for  $v_1 = v_2 = 0$ . [10 marks]

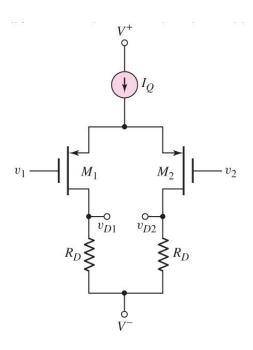



Figure 2

#### **QUESTION 2 [20 MARKS]**

(a) The differential amplifier shown in Figure 3 is biased by a 0.20 mA constant current source (i.e.  $I_Q = 0.20$  mA). It is to be redesigned to use an active load in order to increase its differential-mode voltage gain  $(A_d)$ . The active load to be used is a 2-Transistor Current Source using PMOS transistors to replace the resistors  $(R_D)$  in the differential amplifier. Let supply voltages be  $\pm 5$  V.

Assume that NMOS devices are available with the following parameters:  $K_n = 400 \, \mu \text{A/V}^2$ ,  $V_{TN} = 0.5 \, \text{V}$ , and  $\lambda_n = 0.02 \, \text{V}^{-1}$ 

Assume that PMOS devices are available with the following parameters:  $K_p = 200 \, \mu \text{A/V}^2$ ,  $V_{TP} = -1 \, \text{V}$ , and  $\lambda_p = 0.02 \, \text{V}^{-1}$ 

- (i) Draw the new circuit incorporating the active load's full circuit diagram. Label the circuit correctly and clearly with appropriate symbols and numbering for transistors used in circuit. Leave  $I_Q$  symbol as it is in Figure 3. [4 marks]
- (ii) Determine the **differential-mode voltage gain**  $(A_d)$  of the circuit. [6 marks]

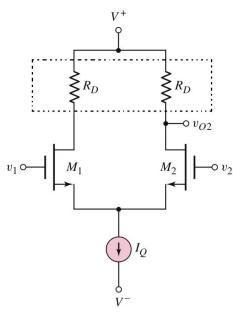



Figure 3

(b) Consider an **idealized class-B** output stage as shown in **Figure 4**. The output stage is to deliver 50 W of average power to the load at a maximum output voltage of 11.3 V. Let the power supply voltages be  $\pm 12$  volts. The average current supplied by the supply units can be calculated by using  $I_{av} = I_p/$ .

(i) Calculate the **peak output current**,  $I_p$ . [4 marks]

(ii) Calculate the **total average power supplied** by the supply units [4 marks]

(iii) Calculate the **power conversion efficiency** for this circuit. [2 marks]

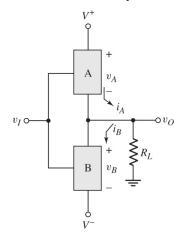



Figure 4

#### **QUESTION 3 [20 MARKS]**

Figure 5 shows a multistage amplifier circuit with transistor parameters of  $\beta = 120$  and  $V_A = \infty$ ,  $V_{BE}(on) = V_{EB}(on) = 0.7$ V. It is given that  $V^{\dagger} = 10$  V.

- (a) Explain the functions of transistors  $Q_1$ ,  $Q_2$  and  $Q_3$  in the multistage amplifier. [5 marks]
- (b) The circuit is such that **zero dc output voltage** is established. Calculate the value of resistors  $R_{C2}$  and  $R_{C3}$  if currents  $I_Q = 0.5$  mA and  $I_{C3} = 1$  mA. [10 marks]
- (c) **Determine** the output resistance,  $R_0$ . [5 marks]

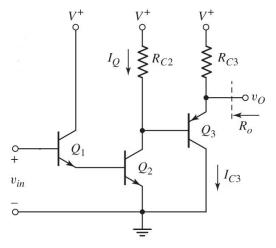



Figure 5

#### **QUESTION 4 [20 MARKS]**

Consider a standard 741 operational amplifier (op-amp) circuit as shown in Figure 6a. Study Figure 6a carefully and observe labelling and values for the resistors in the circuit. Load resistance  $R_L = 2 \text{ k}\Omega$  is connected to the Output of the 741 op-amp. The op-amp is supplied by  $\pm 15 \text{ V DC}$  voltages.

The transistors have  $\beta_n = 200$ ,  $\beta_p = 50$ , Early voltages  $V_{AN} = V_{AP} = 50$  V,  $V_{BE}(\mathbf{on}) = V_{EB}(\mathbf{on}) = 0.6$  V, and the reverse saturation current  $I_S = 5 \times 10^{-16}$  A.

From DC analysis, bias currents for selected transistors are  $I_{C13A} = 0.18$  mA,  $I_{C13B} = 0.54$  mA,  $I_{C16} = 15.8$   $\mu$ A,  $I_{C17} = 0.54$  mA,  $I_{C20} = 0.138$  mA, and  $I_{C22} = 0.18$  mA.

**Figure 6b** shows the AC equivalent circuit for the gain stage of the 741 op-amp. **Figure 6c** shows the AC equivalent circuit for the output stage of the 741 op-amp, which is used to calculate  $R_{i3}$  in the **Figure 6b**.

With small-signal analysis, the voltage gain for the gain stage  $(A_{\nu 2})$  of the 741 op-amp can be calculated using the following formula:

$$A_{v2} = \frac{v_{o2}}{v_{o1}} = \frac{-\beta_n (1 + \beta_n) R_9 (R_{act2} || R_{i3} || R_{o17})}{R_{i2} (R_9 + R_{b17})}$$
Where: 
$$R_{act2} = r_{o13B}$$

$$R_{i3} = r_{\pi 22} + (1 + \beta_p) [R_{19} || R_{20}]$$

$$R_{19} \cong R_{13A}$$

$$R_{20} = r_{\pi 20} + (1 + \beta_p) R_L$$

$$R_{b17} = r_{\pi 17} + (1 + \beta_n) R_8$$

Calculate the voltage gain for the gain stage  $(A_{v2})$  of the 741 op-amp if  $R_8$  is short circuit. Neglect base current in your calculations. Apply appropriate assumptions and recall standard formula for parameters which are not given above. [20 marks]

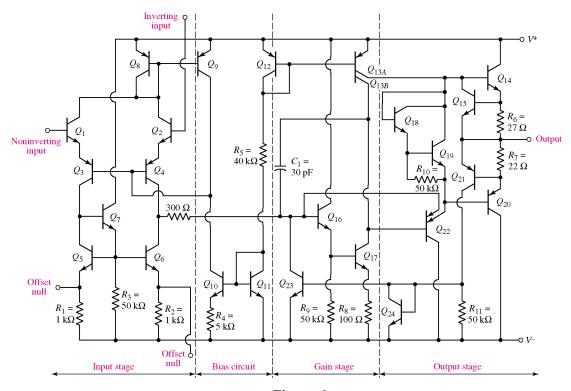



Figure 6a

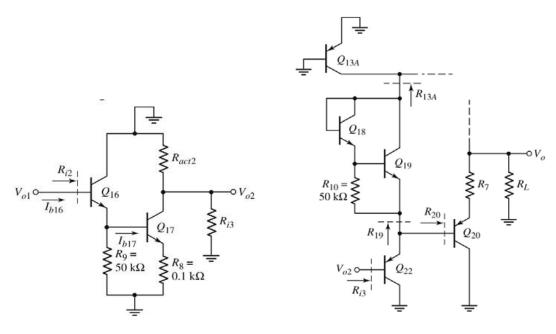



Figure 6b

Figure 6c

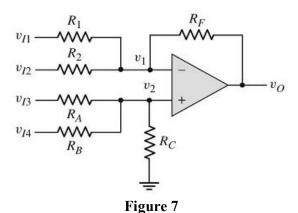
#### **QUESTION 5 [20 MARKS]**

(a) Briefly describe two characteristics of an ideal op amp.

[4 marks]

(b) State three applications for the ideal op amp.

[3 marks]


(c) Refer to the **generalised summing amplifier** using ideal op amp in **Figure 7**. The output voltage is given by:

$$v_{O} = -\frac{R_{F}}{R_{1}}v_{I1} - \frac{R_{F}}{R_{2}}v_{I2} + \left(1 + \frac{R_{F}}{R_{N}}\right) \left[\frac{R_{P}}{R_{A}}v_{I3} + \frac{R_{P}}{R_{B}}v_{I4}\right]$$

Where  $R_N = R_1 // R_2$  and  $R_P = R_A // R_B // R_C$ 

Design the summing amplifier for  $v_O = 2v_{I1} - 10v_{I2} + 3v_{I3} - v_{I4}$ 

Use  $500k\Omega$  for the largest resistor value. Design the circuit such that the input impedance seen by each source is the largest value possible. [13 marks]



-END OF QUESTION PAPER-

#### **APPENDIX:**

## A) BASIC FORMULA FOR TRANSISTOR

## **BJT**

$$i_C = I_S e^{v_{BE}/V_T}$$
; NPN

$$i_C = I_S e^{v_{EB}/V_T}$$
; PNP

$$i_C = \beta i_B = \alpha i_E$$

$$i_E = i_B + i_C$$

$$\alpha = \frac{\beta}{\beta + 1}$$

;Small signal

$$\beta = g_m r_{\pi}$$

$$g_m = \frac{I_{CQ}}{V_T}$$

$$r_{\pi} = \frac{\beta V_T}{I_{CO}}$$

$$r_o = \frac{V_A}{I_{CO}}$$

$$V_T = 26 \,\mathrm{mV}$$

## **MOSFET**

: N – MOSFET

$$v_{DS}(\text{sat}) = v_{GS} - V_{TN}$$

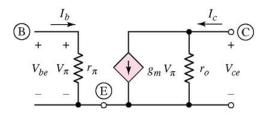
$$i_D = K_n [v_{GS} - V_{TN}]^2$$

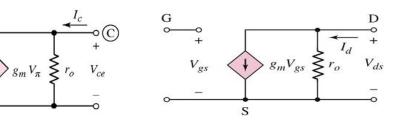
$$K_{n} = \frac{\mu_{n} C_{ox} W}{2L} = \frac{k_{n}}{2} \cdot \frac{W}{L}$$

; P – MOSFET

$$v_{SD}(\text{sat}) = v_{SG} + V_{TP}$$

$$i_D = K_p [v_{SG} + V_{TP}]^2$$


$$K_{p} = \frac{\mu_{p} C_{ox} W}{2L} = \frac{k_{p}'}{2} \cdot \frac{W}{L}$$


;Small signal

$$g_m = 2\sqrt{K_? I_{DQ}}$$

$$r_o \cong \frac{1}{\lambda I_{DO}}$$

#### B) HYBRID- EQUIVALENT CIRCUITS



