Name:

Student ID Number:

Section: 01/02/03/04/05/06 A/B

Lecturer: Dr Fazrena / Dr Jamaludin /

Dr Azni Wati / Dr Jehana / Ms Zarrin

College of Engineering

Department of Electronics and Communication Engineering

Test 1 SOLUTION

SEMESTER 1, ACADEMIC YEAR 2016/2017

Subject Code	•	EEEB273
Course Title	•	Electronics Analysis & Design II
Date	•	15 July 2016
Time Allowed	•	1½ hour

Instructions to the candidates:

- 1. Write your Name and Student ID number. Circle your section number.
- 2. Write all your answers using pen. DO NOT USE PENCIL except for the diagram.
- 3. ANSWER ALL QUESTIONS.
- 4. WRITE YOUR ANSWER ON THIS QUESTION PAPER. Use both sides of the question paper to write your answers.
- 5. For all calculations, assume that $V_T = 26 \text{ mV}$.

NOTE: DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO.

Question No.	1	2	3	Total
Marks				

Question 1 [40 marks]

- (a) The Widlar current source is shown in Figure 1. It is given that $V^+ = 12V$, V = -12V, $R_I = 50k\Omega$ and $V_{BEI} = 0.68V$ at 1mA.
 - i) By clearly stating any assumptions, <u>derive</u> the relationship between I_o and I_{REF} for a Widlar current source to achieve the equation below:

[8 marks]

$$I_O R_E = V_T \ln(\frac{I_{REF}}{I_O})$$

ii) **Design** the current source to provide output current of $3\mu A$ by determining I_{REF} , I_{CI} , I_{C2} , V_{BE2} and R_E . [12 marks]

Answers for Question 1(a)i)

Neglecting base currents, $I_B = 0$, $I_C = I_E$ $I_{C1} = I_{REF} = I_{E1}$, $I_{C2} = I_O = I_{E2}$ $I_{C1} = I_S \exp(V_{BE1}/V_T) = I_{REF}$ $I_{C2} = I_S \exp(V_{BE2}/V_T) = I_O$	[1mark] [1mark] [1mark] [1mark]
$V_{BE1} = V_T \ln(I_{REF}/I_S)$ and $V_{BE2} = V_T \ln(I_{O'})$	(I _s) [Imark]

Answers for Question 1(a)ii)

 $IREF = [V^+ - VBE1 - V^-] / R1 = [12 - 0.68 - (-12)]/50k$ = 0.4664 mA[2marks] Calculate IS: IC= 1mA when VBE1 = 0.68 V $1m = IS \exp[0.68/26m]$ $IS = 4.308 \text{ x } 10^{-15} \text{ A}$ [2marks] Recalculate VBE1: VBE1 = VT ln (IREF/IS) = $26m \ln (0.4664m/4.308 \times 10^{-15})$ = 0.6602 V[2marks] **Recalculate IREF:** IREF = [12 - 0.6602 - (-12)]/50k = 0.4668 mA[1mark] Therefore, IC1 = IREF = 0.4668 mA[1mark] IC2 = IO = 3 uA[1mark] VBE2 = VT ln (IO/IS) = 26m ln (3 uA /4.308 x 10^{-15}) = 0.5289 V [1mark] Calculating RE: $R_E = (V_T / I_O) ln(I_{REF} / I_O) = (26m/3 \text{ u}) ln (0.4668 \text{ mA} / 3 \text{ uA})$ $= 43.74 \text{ k}\Omega$ [2marks]

(b) Design a **pnp version of the Wilson current source** using a resistor, R_I , to establish the current, I_{REF} . The circuit parameters are $V^+ = 10$ V, $V^- = -10$ V, and the transistor parameters are: $V_{EB}(on) = 0.6$ V, $\beta = 80$, and $V_A = \infty$.

- i) **Sketch** the circuit of the design.
- ii) What is I_{REF} , if the load current, I_0 is 0.8 mA?
- iii) Compare and contrast the <u>stability</u> of the Wilson current source to a three-transistor current source. [4 marks]

Q1, Q2 and Q3 placement: [4 marks] *Insertion of R_1* [2 marks]

Labels of I_{REF} and I_O [2 marks]

(ii) $I_0 = I_{REF} \left[\frac{1}{\left(1 + \frac{2}{\beta(\beta+2)} \right)} \right] \dots [2 \text{ marks}]$ For $I_0 = 0.8 \text{ mA}$, substitute into eqn.,

 $I_{REF} = I_0 \left[1 + \frac{2}{\beta(\beta+2)} \right]$ $I_{REF} = (0.8m) \left[1 + \frac{2}{(80)(82)} \right]$ $I_{REF} = 0.8002 \text{ mA } [2 \text{ marks}]$ For R1;

$$R_{1} = \frac{V^{+} - V_{BE1} - V_{BE3} - V^{-}}{I_{REF}} \dots [2 \text{ marks}]$$
$$R_{1} = \frac{10 - 0.6 - 0.6 - (-10)}{0.8002m}$$
$$= 23.49 \text{ k}\Omega [2 \text{ marks}]$$

(iii) The stability of the circuits:

Wilson: $R_0 = \frac{\beta}{2} r_{03}$, and ...[1 mark] $3TCS: R_0 = r_{02}$...[1 mark]

Therefore, Wilson current source has more stability than 3TCS by a factor of $\beta/2$.

[2 marks]

[8 marks]

Question 2 [30 marks]

- (a) Consider the basic two-transistor NMOS current source in Figure 2. The circuit parameters are $V^+ = 2.5$ V, $V^- = -2.5$ V, and $I_{REF} = 120\mu$ A. The transistor parameters are $V_{TN} = 0.8$ V, $k'_n = 80 \mu$ A/V², $(W/L)_1 = 3$, $(W/L)_2 = 4.5$, and $\lambda = 0.01$ V⁻¹. Calculate I_{D2} at $V_{DS2} = 3$ V. [15 marks]
- (b) <u>Redesign</u> the NMOS current source circuit in Figure 2 such that the minimum voltage at V_{D2} = -2.0 V, $I_{REF} = 60 \ \mu$ A, and the load current $I_O = 100 \ \mu$ A. [15 marks]

Answers for Question 2(a)

$$I_{REF} = \frac{k_n'}{2} \left(\frac{W}{L}\right)_1 (V_{GS1} - V_{TN})^2$$

$$V_{GS1} = \sqrt{\frac{2I_{REF}}{k_n'(W/L)_1}} + V_{TN} = \sqrt{\frac{2(120\mu)}{(80\mu)(3)}} + 0.8 = 2V$$
(3)

$$V_{GS1} = V_{GS2}$$

$$I_{D2} = \frac{k'_n}{2} \left(\frac{W}{L}\right)_2 \left(V_{GS2} - V_{TN}\right)^2 = \frac{80\mu}{2} (4.5)(2-1)^2 = 180\mu A$$
(3)

$$I_{D2} = 180\,\mu A \text{ at } V_{DS2} = 2V$$

$$At V_{DS2} = 3V$$

$$I_{D2(new)} = I_{D2} + \Delta I_{D2} = 180\,\mu A + \frac{\Delta V_{DS2}}{R_o}$$
where $R_o = \frac{1}{\lambda I_{DQ}} = \frac{1}{(0.01)(180\,\mu)} = 555.6k\Omega$

$$(2)$$

$$\Delta V_{DS2} = 3 - 2 = 1V$$

$$(1)$$

$$I_{D2(new)} = 180\,\mu A + \frac{1}{555.6k} = 181.8\,\mu A$$

$$(2)$$

Answers for Question 2 (b)

VD2 = VDS2 + VS2 = VDS2 + V- VD2min = VDS2(sat) + V- VDS2(sat) = VD2min - V- = -2 - (-2.5) = 0.5V	[3marks]
	[[]
Also, $VDS2(sat) = VGS2 - VTN$ VGS2 = VDS2(sat) + VTN	
= 0.5 + 0.8 = 1.3 V = VGS1	[3marks]
ID1 = IREF = 60 uA	
$ID1 = (kn^{2}/2)(W/L)_{1}(VGS1-VTN)^{2}$	
$60u = (80u/2) (W/L)_1 (1.3-0.8)^2$ $(W/L)_1 = 6$	[3marks]
ID2 = IO = 100 uA $ID2 = (Im^2/2)(W/L) (VCS2 VTN)^2$	
$100u = (80u/2) (W/L)_2 (VOS2 - VIIN)$ $100u = (80u/2) (W/L)_2 (1.3 - 0.8)^2$	
$(W/L)_2 = 10$	[3marks]
$R = [V^+ - VGS1 - V^-] / IREF$	
= [2.5 - 1.3 - (-12)]/60u	
$= 61.6^{\circ}/\text{K}$	[3marks]

Question 3 [30 marks]

The basic BJT differential pair is shown in Figure 3. The circuit parameter values are: $V^+ = +12$ V, V = -12 V, $I_Q = 1.2$ mA, and $R_C = 12$ k Ω . The transistor parameters in the differential pair are $\beta = \infty$ (neglect base currents), $V_A = \infty$, and V_{BE} (on) = 0.7 V. The constant current source in Figure 3 that is providing the current I_Q is implemented using the <u>cascode current source</u>.

- (a) **Sketch the full differential pair circuit** that includes the circuit for the **cascode current** source. [10 marks]
- (b) **Determine** i_{C1} and v_{CE2} for common-mode voltages $v_{B1} = v_{B2} = v_{CM} = -3.5$ V. [10 marks]
- (c) It is given that the input voltages for the differential amplifier are $v_{B1} = 210 \times 10^{-6} \sin \omega t V$ and $v_{B2} = 180 \times 10^{-6} \sin \omega t V$. Calculate the differential-mode input voltage (v_d) and common-mode input voltage (v_{cm}) of the differential amplifier. Then, find the maximum and minimum values of v_d and v_{cm} .

[10 marks]

(a)

(b)					
$\beta = \infty$					
	<i>i</i> _{C1}	$= i_{E1}$	$= I_Q / 2 = 1.2 \text{m}/2$	= 0.6 mA	[1, 1]

$v_{B1} = v_{B2} = v$	СМ		
<i>i</i> _{C2}	$= i_{C1}$	= 0.6 mA	[1]
<i>V</i> C2	$= V^+ - i_{C2} R_C$		[1]
	= 12 - (0.6m)(12k)	= 4.8 V	[1]

V_{BE} (on)	[1]
.7 $= -4.2 V$	[1]
	T_{BE} (on) .7 = -4.2 V

$$v_{CE2} = v_{C2} - v_E$$
 [2]
= 4.8 - (-3.5) = 8.3 V [1]

(c)				
<i>v</i> _d	$= v_{B1} - v_{B2}$			[1]
	$= 210 \times 10^{-6} \sin \omega t$	- 180x10 ⁻⁶ sin ω	t	[1]
	= 30x10 ⁻⁶ sin ωt V	7		[1]
$v_d(\mathbf{m})$	$ax) = 30x10^{-6}(1)$	$= 30 \mu V$	{sin wt = 1}	[1]
$v_d(\mathbf{m})$	$\sin(x) = 30x10^{-6}(-1)$	$= -30 \ \mu V$	$\{\sin \omega t = -1\}$	[1]

V _{cm}	$= (v_{B1} + v_{B2}) / 2$			[1]	
	$= (210 \times 10^{-6} \sin \omega t)$	+ 180x10 ⁻⁶ sin a	ot)/2	[1]	
	$= 195 \times 10^{-6} \sin \omega t$				
v _{cm} (n	$(1) = 195 \times 10^{-6} (1)$	= 195 μV	{sin ωt = 1}	[1]	
v _{cm} (n	$\min(x) = 195 \times 10^{-6} (-1)$	= -195 μV	$\{\sin \omega t = -1\}$	[1]	