Name:

Student ID Number:

Section: 01/02/03/04/05/06 A/B

Lecturer: Dr Fazrena / Dr Jamaludin /

Dr Azni Wati / Dr Jehana / Ms Zarrin

College of Engineering

Department of Electronics and Communication Engineering

Test 1

SEMESTER 1, ACADEMIC YEAR 2016/2017

Subject Code	:	EEEB273
Course Title	•	Electronics Analysis & Design II
Date	•	15 July 2016
Time Allowed	•	1½ hour

Instructions to the candidates:

- 1. Write your Name and Student ID number. Circle your section number.
- 2. Write all your answers using pen. DO NOT USE PENCIL except for the diagram.
- 3. ANSWER ALL QUESTIONS.
- 4. WRITE YOUR ANSWER ON THIS QUESTION PAPER. Use both sides of the question paper to write your answers.
- 5. For all calculations, assume that $V_T = 26 \text{ mV}$.

NOTE: DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO.

Question No.	1	2	3	Total
Marks				

FORMULA FOR TRANSISTORS

BJT

$$i_{C} = I_{S} e^{v_{BE}/V_{T}}; \text{npn}$$

$$i_{C} = I_{S} e^{v_{EB}/V_{T}}; \text{pnp}$$

$$i_{C} = \alpha i_{E} = \beta i_{B}$$

$$i_{E} = i_{B} + i_{C}$$

$$\alpha = \frac{\beta}{\beta + 1}$$

;Small signal $\beta = g_m r_\pi$ $g_m = \frac{I_{CQ}}{V_T}$ $r_\pi = \frac{\beta V_T}{I_{CQ}}$ $r_o = \frac{V_A}{I_{CQ}}$ $V_T = 26 \text{ mV}$

MOSFET

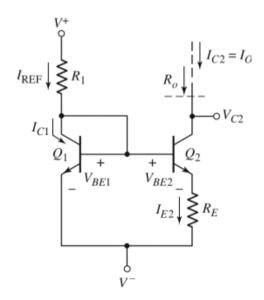
in ; N – MOSFET $v_{DS} (sat) = v_{GS} - V_{TN}$ $i_D = K_n [v_{GS} - V_{TN}]^2$ $K_n = \frac{k'_n}{2} \cdot \frac{W}{L}$; P – MOSFET $v_{SD} (sat) = v_{SG} + V_{TP}$ $i_D = K_p [v_{SG} + V_{TP}]^2$ $K_p = \frac{k'_p}{2} \cdot \frac{W}{L}$

;Small signal

$$g_m = 2\sqrt{K_{\gamma}I_{DQ}}$$

 $r_o \cong \frac{1}{\lambda I_{DQ}}$

<u>Question 1</u> [40 marks]


- (a) The Widlar current source is shown in Figure 1. It is given that $V^+ = 12V$, V = -12V, $R_I = 50k\Omega$ and $V_{BEI} = 0.68V$ at 1mA.
 - i) **By clearly stating any assumptions,** <u>derive</u> the relationship between I_o and I_{REF} for a Widlar current source to achieve the equation below:

[8 marks]

$$I_O R_E = V_T \ln(\frac{I_{REF}}{I_O})$$

ii) **Design** the current source to provide output current of $3\mu A$ by determining I_{REF} , I_{C1} , I_{C2} , V_{BE2} and R_E . [12 marks]

Answers for Question 1(a)

(b) Design a **pnp version of the Wilson current source** using a resistor, R_I , to establish the current, I_{REF} . The circuit parameters are $V^+ = 10$ V, $V^- = -10$ V, and the transistor parameters are: $V_{EB}(on) = 0.6$ V, $\beta = 80$, and $V_A = \infty$.

i)	Sketch the circuit of the design.	[8 marks]
ii)	What is I_{REF} , if the load current, I_O is 0.8 mA?	[8 marks]

iii) Compare and contrast the <u>stability</u> of the Wilson current source to a three-transistor current source. [4 marks]

Answers for Question 1(b)

Question 2 [30 marks]

- (a) Consider the basic two-transistor NMOS current source in Figure 2. The circuit parameters are $V^+ = 2.5$ V, $V^- = -2.5$ V, and $I_{REF} = 120\mu$ A. The transistor parameters are $V_{TN} = 0.8$ V, $k'_n = 80 \mu$ A/V², $(W/L)_1 = 3$, $(W/L)_2 = 4.5$, and $\lambda = 0.01$ V⁻¹. Calculate I_{D2} at $V_{DS2} = 3$ V. [15 marks]
- (b) <u>Redesign</u> the NMOS current source circuit in Figure 2 such that the minimum voltage at V_{D2} = -2.0 V, $I_{REF} = 60 \ \mu$ A, and the load current $I_O = 100 \ \mu$ A. [15 marks]

Answers for Question 2

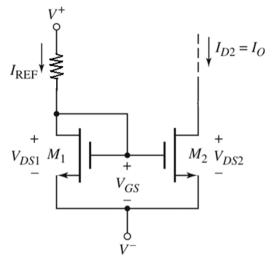


Figure 2

Answers for Question 2 (continued)

Question 3 [30 marks]

The basic BJT differential pair is shown in **Figure 3**. The circuit parameter values are: $V^{\dagger} = +12$ V, V = -12 V, $I_Q = 1.2$ mA, and $R_C = 12$ k Ω . The transistor parameters in the differential pair are $\beta = \infty$ (neglect base currents), $V_A = \infty$, and V_{BE} (on) = 0.7 V. The constant current source in Figure 3 that is providing the current I_Q is implemented using the <u>cascode current source</u>.

- (a) **Sketch the full differential pair circuit** that includes the circuit for the **cascode current** source. [10 marks]
- (b) **Determine** i_{C1} and v_{CE2} for common-mode voltages $v_{B1} = v_{B2} = v_{CM} = -3.5$ V. [10 marks]
- (c) It is given that the input voltages for the differential amplifier are $v_{B1} = 210 \times 10^{-6} \sin \omega t V$ and $v_{B2} = 180 \times 10^{-6} \sin \omega t V$. Calculate the differential-mode input voltage (v_d) and common-mode input voltage (v_{cm}) of the differential amplifier. Then, find the maximum and minimum values of v_d and v_{cm} .

[10 marks]

Answers for Question 3

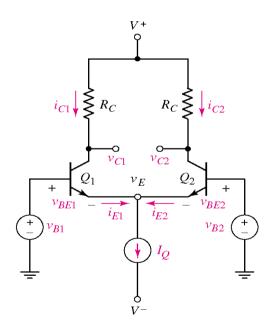


Figure 3