Name:

Student ID Number:

Section:

Lecturer: Dr Fazrena Azlee/Dr Azni Wati/

Dr Jamaludin/Dr Jehana Ermy/ Ms Zarrin

College of Engineering

Department of Electronics and Communication Engineering

Test 2

SEMESTER 1, ACADEMIC YEAR 2016/2017 (SOLUTION)

Subject Code	•	EEEB273
Course Title	•	Electronics Analysis & Design II
Date	•	19 August 2016
Time Allowed	:	1½ hours

Instructions to the candidates:

- 1. Write your Name, Student ID number, and Section number. Indicate your Lecturer.
- 2. Write all your answers using pen. DO NOT USE PENCIL except for the diagram.
- 3. ANSWER ALL QUESTIONS.
- 4. WRITE YOUR ANSWER ON THIS QUESTION PAPER.
- 5. For all calculations, use $V_T = 26 \text{ mV}$ when necessary.

NOTE: DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO.

Question No.	1	2	3	Total
Marks				

Question 1 [30 marks]

A differential amplifier is shown in **Figure 1.** The circuit parameters are given as $V^+ = 10$ V, $V^- = -10$ V, and $I_Q = 1.5$ mA. The NMOS transistor parameters are $V_{TN} = 0.4$ V, $k'_n = 100 \ \mu A/V^2$, $\lambda_n = 0.025$ V⁻¹, $(W/L)_{1,2} = 5$ and $(W/L)_8 = 20$. The PMOS transistor parameters are $V_{TP} = -0.4$ V, $k'_p = 40 \ \mu A/V^2$, $\lambda_p = 0.04$ V⁻¹ and $(W/L)_{3,4} = 10$.

i. Determine the range of the output voltage, v_o , for the differential amplifier.

[15 marks]

- Define common mode rejection ratio, CMRR. How can the circuit in Figure 1 be redesigned to improve its CMRR? Explain what will happen to the range of the output voltage calculated in part i) if the circuit is redesigned. [5 marks]
- iii. Find the **output resistance**, R_o , of the differential amplifier. [10 marks]

Answer for Question 1(i) – 15 marks

$$V_{o}(\max) = V^{+} - V_{SD4}(sat) \quad [2]$$

$$I_{D1} = I_{Q} / 2 = I_{D2} = I_{D3} = I_{D4} = 1.5mA / 2 = 0.75mA$$

$$V_{SG4} \Rightarrow I_{D4} = \left(\frac{k_{p}}{2}\right) \left(\frac{W}{L}\right)_{4} \left(V_{SG4} + V_{TP}\right)^{2}$$

$$0.75m = \left(\frac{40\mu}{2}\right) (10) \left(V_{SG4} + (-0.4)\right)^{2}$$

$$\rightarrow V_{SG4} = 2.336V \quad [2]$$

$$V_{SD4}(sat) = V_{SG4} + V_{TP} = 2.336 + (-0.4) = 1.937V \quad [1]$$

$$V_{o}(\max) = 10 - (1.937) = 8.06V \quad [1]$$

$$V_{o}(\min) = V_{DS2}(sat) + V_{DS8}(sat) + V^{-} [2]$$

$$V_{GS2} \Rightarrow I_{D2} = \left(\frac{k_{n}}{2}\right) \left(\frac{W}{L}\right)_{2} \left(V_{GS2} - V_{TN}\right)^{2}$$

$$0.75m = \left(\frac{100\mu}{2}\right) (5) \left(V_{GS2} - 0.4\right)^{2}$$

$$\rightarrow V_{GS1} = 2.132V [2]$$

$$V_{DS2}(sat) = V_{GS2} - V_{TN} = 2.132 - 0.4 = 1.732V [1]$$

$$V_{GS8} \Rightarrow I_{D8} = \left(\frac{k_{n}}{2}\right) \left(\frac{W}{L}\right)_{8} \left(V_{GS8} - V_{TN}\right)^{2}$$

$$0.75m = \left(\frac{100\mu}{2}\right) (20) \left(V_{GS8} - 0.4\right)^{2}$$

$$\rightarrow V_{GS8} = 1.625V [2]$$

$$V_{DS8}(sat) = V_{GS8} - V_{TN} = 1.625 - 0.4 = 1.225V [1]$$

$$V_{o}(\min) = 1.732 + 1.225 + (-10) = -7.04V [1]$$

Answer for Question 1(ii) – 5 marks

• Common mode rejection ratio, CMRR: Ability of Differential amplifier circuit to reject common-mode input signal. Ideally CMRR is infinity. [1.5 marks]

$$CMRR = \frac{|A_d|}{|A_{cm}|} \qquad [1 \text{ mark}]$$

- For Figure 1, CMRR is improved by lowering its common mode gain Acm [0.5 marks]
- Acm is decreased by using a current source circuit with higher output resistance, for example Cascode, Wilson or Widlar current source. [1 mark]
- Using Cascode, Wilson or Widlar as biasing circuit will increase the voltage across the current source, therefore the value of VO(min) calculated in part i) will be increased, i.e. the output voltage range is reduced. [1 mark]

Answer for Question 1(iii) – 10 marks

$$R_{o} = (r_{o2} \| r_{o4}) [2]$$

$$r_{o2} = \frac{1}{\lambda_{n} I_{D2}} = \frac{1}{(0.025)(0.75m)} = 53.33k\Omega \quad [3]$$

$$r_{o4} = \frac{1}{\lambda_{p} I_{D4}} = \frac{1}{(0.04)(0.75m)} = 33.33k\Omega \quad [3]$$

$$R_{o} = (r_{o2} \| r_{o4}) = (53.33k \| 33.33k) = 20.51k\Omega \quad [2]$$

Question 2 [30 marks]

- (a) The circuit in **Figure 2** has a pair of npn bipolar transistors as input devices and three-pnpbipolar- transistor circuit connected as an active load. The differential amplifier circuit is biased with a constant current source $I_Q = 0.2$ mA that has and output resistance $R_{OCS} = 50$ MQ. The transistor parameters are: $\beta = 100$, $V_{A1} = V_{A2} = 100$ V, $V_{A3} = V_{A4} = 60$ V, and $V_{A5} = \infty$.
 - i. Calculate the open-circuit differential-mode voltage gain A_d . [12 marks]
 - ii. **Determine** R_L such that the differential-mode voltage gain is reduced to **80%** of its opencircuit value. [8 marks]

Answer for Question 2(a)

(i)	I _{C2}	$= \beta I_Q$	$/(1+\beta)$ /[2(1+ β)] 0)(0.2m)/2(101) = 0.0990 mA	[1] [1] [1]
	r _{O2} r _{O4}		$_{1/1_{C2}} = 100/0.0990 \text{m} = 1.01 \text{ M}\Omega$ $_{1/1_{C4}} = 60/0.0990 \text{m} = 606.1 \text{ k}\Omega$	[2] [2]
	$R_0 = 1$	$r_{O2} r_{O4}$	$= 1.01 \mathbf{M} \ 606.1 \mathbf{k} = 378.8 \mathbf{k} \Omega$	[2]
	$g_m = I$	$L_{C2}/V_T =$	(0.0990m)/(0.026) = 3.808 mA/V	[2]
	$A_v = g$	$g_m(R_O)$	= (3.808 m)(378.8 k) = 1442	[1]
(ii)	New]	R _{ON}	$= \mathbf{R}_{O} \ \mathbf{R}_{L}$ $= \mathbf{R}_{O} \mathbf{R}_{L} / (\mathbf{R}_{O} + \mathbf{R}_{L})$	[2]
	A_{vN}		=(80%)(1442)=1153.6	[1]
		$6(R_0+F_0)$	$f_{\rm L} = g_{\rm m}(R_{\rm ON}) = [g_{\rm m}R_{\rm O}R_{\rm L}]/(R_{\rm O}+R_{\rm L})$ $R_{\rm L}) = 1442R_{\rm L}$ $53.6 R_{\rm O})/(1442-1153.6)$	[2]
	κL		$53.6 \text{ x}_{3}78.8 \text{k})/(288.4) = 1515.2 \text{ k}\Omega$	[3]
		N		

OR (can be accepted)

(i) $I_{C2} = I_Q/2 = 0.2m/2 = 0.1 \text{ mA}$	[3]
--	-----

$$\mathbf{R}_{\rm O} = \mathbf{r}_{\rm O2} \| \mathbf{r}_{\rm O4} = 1\mathbf{M} \| 600\mathbf{k} = 375 \ \mathbf{k}\Omega$$
 [2]

$$g_m = I_{C2}/V_T = (0.1m)/(0.026) = 3.846 \text{ mA/V}$$
 [2]

$$A_v = g_m(R_0) = (3.846m)(375k) = 1442$$
 [1]

(ii) New $R_{ON} = R_O || R_L = R_O R_L / (R_O + R_L)$ [2]

$$A_{\rm vN}$$
 = (80%)(1442) = 1153.6 [1]

Thus
$$1153.6 = g_m(R_{ON}) = [g_m R_O R_L]/(R_O + R_L)$$
 [2]
 $1153.6(R_O + R_L) = 1442R_L$
 $R_L = (1153.6 R_O)/(1442-1153.6)$
 $= (1153.6 x378.8k)/(288.4) = 1515.2 k\Omega$ [3]

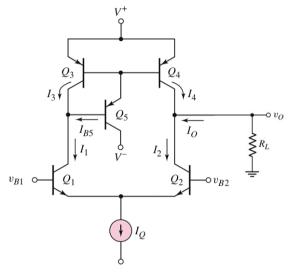


Figure 2

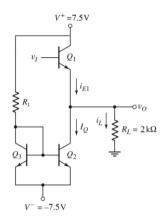
(b) Refer to Figure 3. It is given that $I_Q = I_{R4} = I_{R6} = 0.4$ mA, and $I_{R7} = 2$ mA. Neglect base currents and assume $V_{BE}(on) = 0.7$ V for all transistors except Q_8 and Q_9 in the Widlar circuit. From small-signal analysis, $R_{i2} = 1.3$ M Ω . Calculate the overall gain of the circuit, $A_d = v_O/v_d$. State any assumptions. Assume $\beta = 100$ and $V_A = \infty$. It is given that the gain of the Darlington Pair can be calculated using:

$$A_{V2} = \left(\frac{I_{R4}}{2V_T}\right) \left(R_5 \parallel R_{i3}\right)$$
 [10 marks]

Answer for Question 2(b)

$Ad = vo/vd = Ad1 \times Av2 \times Av3$ [1 mark]		
$\mathbf{M} = \mathbf{V}_0 / \mathbf{V}_0 = \mathbf{M}_0 \mathbf{V}_0 V$		
$Ad1 = \frac{1}{2} gm1(Rc ro2 Ri2)$ [1 mark]		
Ic1 = IQ/2 = 0.4m/2 = 0.2mA gm1 = Ic1/VT = 0.2m/26m = 7.692 mA/V [1/2 m	arks]	
ro2 infinity		
→ Ad1 = $\frac{1}{2}$ (7.692 m)(20k 1.3M) = $\frac{1}{2}$ (7.692 m)(19) = 75.75 V/V [1/2 marks]	9.7k)	
Av2 = (IR4/2VT)(R5 Ri3)		
$\begin{aligned} &\text{Ri3} = r\pi5 + (1+\beta)\text{RE'} & [1 \text{ mark}] \\ &\text{RE'} = \text{R6} + (\text{Rb6} \text{Rc9}) = \text{R6} + \text{Rb6} \\ &\text{Rb6} = r\pi6 + (1+\beta)\text{R7} & [1 \text{ mark}] \end{aligned} \qquad \text{since } \text{H} \end{aligned}$	Rc9 infinity	[1 mark]
$r\pi 6=\beta VT/Ic6 = (100)(26m)/2m = 1.3k\Omega$ $r\pi 5=\beta VT/Ic5 = (100)(26m)/0.4m = 6.5k\Omega$	[1/2 marks] [1/2 marks]	
Rb6 = $1.3k + (1+100)(5k) = 506.3k\Omega$ RE' = R6 + Rb6 = $16.5k + 506.3k = 522.8k\Omega$ Ri3 = $r\pi5 + (1+\beta)RE' = 6.5k + (1+100)(522.8k) = 5$	[1/2 marks] 2.81 MΩ	[1/2 marks]
→ Av2 = $(0.4m/2x26m)(5k 52.81M) = 38.46 V/V$	[1/2 marks]	
Av3 = 1 V/V [1 mark]		
→ Ad = vo/vd = 75.75 x 38.46 x 1 = 2913 V/V	[1/2 marks]	

<u>Question 3</u> [40 marks]


(a) Compare and contrast the output stage classes (namely class-A, class-B, and class-AB). You might consider the keywords: percent (%) of time the output transistors are conducting; the power conversion efficiency; quiescent bias current; power dissipation. [15 marks]

Answer for Question 3(a)

	percent (%) of time the	power conversion	quiescent bias current
	output transistors are	efficiency	
	conducting		
Class-A	entire cycle of the input	$\eta(\max) = \frac{1}{4} \Longrightarrow 25\%$	Output transistor is
	signal	$\eta(\max) = \frac{1}{4} = 2570$	biased at a quiescent
	[2 marks]	[2 marks]	current I_Q
			[1 mark]
		rarely used in high-power	
		applications	
Class-B	Exactly one-half of each	$n(max) = \frac{\pi}{2} \rightarrow 78.50$	Zero quiescent current
	sine-wave input cycle $\eta(\max) = \frac{\pi}{4} \Longrightarrow 78.5\%$		[1 mark]
	[2 marks]	[2 marks]	
Class-AB	<i>slightly more than half</i> a	Power conversion	biased at a small
	cycle of the input signal	efficiency in between	quiescent current I_Q
	[2 marks]	class-A and class-B	[1 mark]
		[2 marks]	

- (b) Consider the emitter follower of the class-A output stage shown in Figure 4. The circuit parameters are: $V^+ = 7.5 \text{ V}$, V = -7.5 V, and $R_L = 2 \text{ k}\Omega$. Assume all transistors are matched with $V_{BE}(on) = 0.7 \text{ V}$ and $V_{CE}(sat) = 0.5 \text{ V}$. Neglect base currents in your calculations.
 - i) Find the value of R_1 that gives the maximum possible output range. [10 marks]
 - ii) Sketch the output current waveform (i_{C1}) for one complete input cycle. [5 marks]
 - iii) Calculate the power conversion efficiency, η , for this output stage. [10 marks]

Answer for Question 3(b)

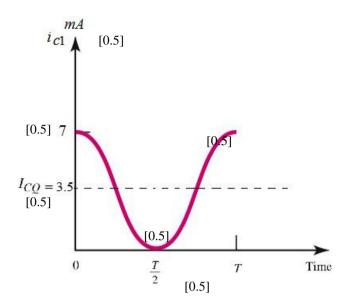
(i)

$$-i_{L\max} = -v_{O\max} / R_L$$
 [1]

$$-v_{O\max} = V^{-} + V_{CE1(sat)} = -7.5 + 0.5 = -7V$$
[2]

$$-i_{L_{\text{max}}} = \frac{7}{2k} = 3.5mA = |I|$$
[2]

$$R = \frac{V^+ - V_{BE2} - V^-}{I} = \frac{7.5 - 0.7 - (-7.5)}{3.5m} = 4.086k\Omega$$
[2]


(**ii**)

$$v_{o(\max)} = V^+ - V_{CE2(sat)} = 7.5 - 0.5 = 7V$$
 [1.5]

$$i_{L(\max)} = v_{o(\max)} / R_L = 3.5mA$$
 [1.5]

$$i_{C1\min} = I + i_{L\min} = 3.5m + (-3.5m) = 0$$
 [1]

$$i_{C1\max} = I + i_{L\max} = 3.5m + 3.5m = 7mA$$
[1]

(iii)

$$\overline{P}_{L} = \frac{1}{2} \frac{V_{p}^{2}}{R_{L}} = \frac{1}{2} \frac{7^{2}}{2k} = 12.25mW$$
[1.5]

$$\overline{P}_{S} = \overline{P}_{S}^{+} + \overline{P}_{S}^{-} = (V^{+} - V^{-})(I) + (0 - V^{-}) \cong 3(7.5)(3.5m) = 78.75mW$$
[2]

$$\eta = \frac{\overline{P}_{S}}{\overline{P}_{L}} = \frac{12.25}{78.75} = 0.1556$$
[1.5]