Name:

Student ID Number:

Section:

Lecturer: Dr Fazrena Azlee/Dr Azni Wati/

Dr Jamaludin/Dr Jehana Ermy/ Ms Zarrin



## **College of Engineering**

Department of Electronics and Communication Engineering

## Test 2

### **SEMESTER 1, ACADEMIC YEAR 2016/2017**

| Subject Code | • | EEEB273                                     |
|--------------|---|---------------------------------------------|
| Course Title | : | <b>Electronics Analysis &amp; Design II</b> |
| Date         | : | 19 August 2016                              |
| Time Allowed | • | 1½ hours                                    |

### Instructions to the candidates:

- 1. Write your Name, Student ID number, and Section number. Indicate your Lecturer.
- 2. Write all your answers using pen. DO NOT USE PENCIL except for the diagram.
- 3. ANSWER ALL QUESTIONS.
- 4. WRITE YOUR ANSWER ON THIS QUESTION PAPER.
- 5. For all calculations, use  $V_T = 26 \text{ mV}$  when necessary.

NOTE: DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO.



| Question No. | 1 | 2 | 3 | Total |
|--------------|---|---|---|-------|
| Marks        |   |   |   |       |
|              |   |   |   |       |

# **BASIC FORMULA**

## <u>BJT</u>

$$i_{C} = I_{S} e^{v_{BE}/V_{T}}; \text{npn}$$

$$i_{C} = I_{S} e^{v_{EB}/V_{T}}; \text{pnp}$$

$$i_{C} = \alpha i_{E} = \beta i_{B}$$

$$i_{E} = i_{B} + i_{C}$$

$$\alpha = \frac{\beta}{\beta + 1}$$

;Small signal

$$\beta = g_m r_\pi$$

$$r_\pi = \frac{\beta V_T}{I_{CQ}}$$

$$g_m = \frac{I_{CQ}}{V_T}$$

$$r_o = \frac{V_A}{I_{CQ}}$$

## **MOSFET**

; N – MOSFET  

$$v_{DS}$$
 (sat) =  $v_{GS} - V_{TN}$   
 $i_D = K_n [v_{GS} - V_{TN}]^2$   
 $K_n = \frac{k'_n}{2} \cdot \frac{W}{L}$   
; P – MOSFET  
 $v_{SD}$  (sat) =  $v_{SG} + V_{TP}$   
 $i_D = K_p [v_{SG} + V_{TP}]^2$   
 $K_p = \frac{k'_p}{2} \cdot \frac{W}{L}$ 

;Small signal  

$$g_m = 2\sqrt{K_{?}I_{DQ}}$$
  
 $r_o \cong \frac{1}{\lambda I_{DQ}}$ 

#### **<u>Question 1</u>** [30 marks]

A differential amplifier is shown in **Figure 1.** The circuit parameters are given as  $V^+ = 10$  V,  $V^- = -10$  V, and  $I_Q = 1.5$  mA. The NMOS transistor parameters are  $V_{TN} = 0.4$  V,  $k'_n = 100 \ \mu \text{A}/\text{V}^2$ ,  $\lambda_n = 0.025 \text{ V}^{-1}$ ,  $(W/L)_{1,2} = 5$  and  $(W/L)_8 = 20$ . The PMOS transistor parameters are  $V_{TP} = -0.4$  V,  $k'_p = 40 \ \mu \text{A}/\text{V}^2$ ,  $\lambda_p = 0.04 \text{ V}^{-1}$  and  $(W/L)_{3,4} = 10$ .

i. Determine the range of the output voltage,  $v_o$ , for the differential amplifier.

[15 marks]

- Define common mode rejection ratio, CMRR. How can the circuit in Figure 1 be redesigned to improve its CMRR? Explain what will happen to the range of the output voltage calculated in part i) if the circuit is redesigned. [5 marks]
- iii. Find the **output resistance**,  $R_o$ , of the differential amplifier. [10 marks]

Answer for Question 1



Figure 1

Answer for Question 1 (continue)

#### Question 2 [30 marks]

- (a) The circuit in **Figure 2** has a pair of npn bipolar transistors as input devices and three-pnpbipolar- transistor circuit connected as an active load. The differential amplifier circuit is biased with a constant current source  $I_Q = 0.2$  mA that has and output resistance  $R_{OCS} = 50$  MQ. The transistor parameters are:  $\beta = 100$ ,  $V_{A1} = V_{A2} = 100$  V,  $V_{A3} = V_{A4} = 60$  V, and  $V_{A5} = \infty$ .
  - i. Calculate the open-circuit differential-mode voltage gain  $A_d$ . [12 marks]
  - ii. Determine  $R_L$  such that the differential-mode voltage gain is reduced to 80% of its opencircuit value. [8 marks]

Answer for Question 2(a)



Figure 2

(b) Refer to Figure 3. It is given that  $I_Q = I_{R4} = I_{R6} = 0.4$  mA, and  $I_{R7} = 2$  mA. Neglect base currents and assume  $V_{BE}(on) = 0.7$  V for all transistors except  $Q_8$  and  $Q_9$  in the Widlar circuit. From small-signal analysis,  $R_{i2} = 1.3$  M  $\Omega$ . Calculate the overall gain of the circuit,  $A_d = v_O/v_d$ . State any assumptions. Assume  $\beta = 100$  and  $V_A = \infty$ . It is given that the gain of the Darlington Pair can be calculated using:



Answer for Question 2(b)

#### Question 3 [40 marks]

(a) Compare and contrast the output stage classes (namely class-A, class-B, and class-AB). You might consider the keywords: percent (%) of time the output transistors are conducting; the power conversion efficiency; quiescent bias current; power dissipation. [15 marks]

Answer for Question 3(a)

- (b) Consider the emitter follower of the class-A output stage shown in Figure 4. The circuit parameters are:  $V^+ = 7.5 \text{ V}$ , V = -7.5 V, and  $R_L = 2 \text{ k}\Omega$ . Assume all transistors are matched with  $V_{BE}(on) = 0.7 \text{ V}$  and  $V_{CE}(sat) = 0.5 \text{ V}$ . Neglect base currents in your calculations.
  - i) Find the value of  $R_1$  that gives the maximum possible output range. [10 marks]
  - ii) Sketch the output current waveform  $(i_{C1})$  for one complete input cycle. [5 marks]
  - iii) Calculate the power conversion efficiency,  $\eta$ , for this output stage. [10 marks]

Answer for Question 3(b)



Figure 4