

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION

SEMESTER 2 2016 / 2017

PROGRAMME	: Bachelor of Electrical & Electronics Engineering (Honours) Bachelor of Electrical Power Engineering (Honours)
SUBJECT CODE	: EEEB273
SUBJECT	: ELECTRONIC ANALYSIS AND DESIGN II
DATE	: January/February 2017
TIME	: 3 hours

INSTRUCTIONS TO CANDIDATES:

- 1. This paper contains **FIVE** (5) questions in **NINE** (9) pages.
- 2. Answer **ALL** questions.
- 3. Write **ALL** answers in the answer booklet provided. **Use pen** to write your answer.
- 4. Write answer to different question on **a new page**.
- 5. Show clearly all calculations, complete with proper Unit for every parameter.

THIS QUESTION PAPER CONSISTS OF NINE (9) PRINTED PAGES INCLUDING THIS COVER PAGE.

Question 1 [20 marks]

Consider a BJT differential amplifier with the circuit shown in Figure 1. The transistor parameters are $\beta = 100$, $V_A = \infty$ for Q_1 and Q_2 , and $V_A = 100$ V for Q_3 and Q_4 .

At input voltages of $v_1 = v_2 = 0$, $I_{C4} = 200 \ \mu\text{A}$, and $I_1 = 0.5 \ \text{mA}$, output voltage is $v_{O2} = 8 \ \text{V}$. Neglect the base currents.

(a)Find the output resistance (R_0) of the current source.[8 marks](b)Determine the value of R_C .[4 marks](c)Find the differential-mode input resistance, R_{id} .[4 marks](d)Find the common-mode input resistance, R_{icm} .[4 marks]

Figure 1

Question 2 [20 marks]

Figure 2 shows a BJT differential amplifier with a bias current, $I_Q = 0.2 \text{ mA}$. The differential amplifier increases its gain by applying a BJT cascode current source comprising **pnp** transistors as an active load. The circuit parameters are $V^+ = 10$ V and $V^- = -10$ V. The transistor parameters are given as $\beta = 80$, $V_{BE}(\text{on}) = 0.7$ V, $V_{AN} = 100$ V, and $V_{AP} = 120$ V.

- (a) Draw the differential amplifier circuit with the added cascode current source as the active load.
 [3 marks]
- (b) **Determine** the output resistance, R_{OAL} , of the cascode current source. Later, **compare** the output difference for the circuit above should the active load is replaced by a two-transistor current source. [7 marks]
- (c) **Find** the differential-mode voltage gain, A_d , of the circuit. [6 marks]
- (d) **Calculate** the output voltage of the circuit with a $v_d = 10 \sin(\omega t)$ mV. [4 marks]

Figure 2

Question 3 [20 marks]

- (a) A class-AB output stage with BJTs is shown in Figure 3. Reverse saturation current for every transistor is $I_S = 2 \times 10^{-15}$ A. Assume $+V_{CC} = +6$ V and $-V_{CC} = -6$ V. Let $R_L = 1$ k Ω and $V_{BB} = 1.40$ V. For the case of the output voltage $v_0 = -4$ V:
 - (i) **Determine** i_L , i_{Cp} , i_{Cn} , and v_I . [6 marks]
 - (ii) **Calculate** the power dissipated in transistor Q_n and Q_p . [4 marks]

(b) Figure 4 shows a circuit with the transistor parameters as β = 120, and V_A = ∞. The bias currents in the transistors are indicated on the figure. Determine the input resistance (R_i) and the output resistance (R_o) of the circuit. [10 marks]

Question 4 [20 marks]

(a) Study the input stage and bias circuit of the 741 op-amp in Figure 5. The circuit parameters are $V^+ = +15$ V, $V^- = -15$ V, and $I_{C9} = 10$ µA. The transistor parameters are $\beta = 200$, $V_{BE6} = V_{BE7} = 0.6$ V, and the reverse saturation current $I_S = 10^{-14}$ A for each transistor. Ignore the base currents and assume the DC currents in the input stage are exactly balanced.

Given that the <u>current flowing through resistor</u> R_5 is 1 mA.

- (i) Determine the values of resistor R_4 and R_5 .[5 marks](ii) Calculate values for current I_{C1} and resistance $r_{\pi 6}$.[3 marks]
- (iii) **Determine** the DC voltage at the collector of Q_6 (i.e. V_{C6}). [2 marks]

Figure 5

(b) Consider the MC14573 op-amp in Figure 6. Assume transistor parameters of $V_{TN} = 0.5 \text{ V}$, $V_{TP} = -0.5 \text{ V}$, $K_n = 125 \text{ }\mu\text{A}/\text{V}^2$, $K_p = 100 \text{ }\mu\text{A}/\text{V}^2$, $\lambda_n = 0.01 \text{ }\text{V}^{-1}$, $\lambda_p = 0.02 \text{ }\text{V}^{-1}$ and the circuit parameters of $V^+ = +10 \text{ V}$ and $V^- = -10 \text{ V}$.

Given that $V_{SG5} = 1.5$ V:

(i)

- (ii) Determine the overall small signal differential-mode voltage gain for the MC14573 op-amp in Figure 6. Gain for the output stage consists of transistor M_7 and M_8 is given

by equation $A_{v2} = g_{m7} (r_{o7} \parallel r_{o8}).$

Find the DC bias currents I_Q .

[6 marks]

[4 marks]

Figure 6

Question 5 [20 marks]

- (a) With a feedback resistor (R_2) of 250 k Ω , design an amplifier <u>using op-amp in non-inverting configuration</u> with a closed-loop gain which can be varied from 11 to 51 V/V. The closed-loop gain can be varied using a potentiometer (R_{1V}) and a fixed-value resistor (R_{1F}) . Draw and label clearly your circuit design. [6 marks]
- (b) Consider the two inverting op-amp circuit connected in cascade as shown in Figure 7. Let $R_1 = 75 \text{ k}\Omega$, $R_2 = 100 \text{ k}\Omega$, $R_3 = 80 \text{ k}\Omega$, and $R_4 = 200 \text{ k}\Omega$. Calculate v_{O1}/v_I and v_O/v_I for the circuit. [4 marks]

Figure 7

(c) Figure 8 shows a design for an instrumentation amplifier using op-amps. In the design, R_{1POT} is a 100 k Ω potentiometer (or a variable resistor) used to provide variable resistance so that differential voltage gain (A_{ν}) of the instrumentation amplifier can be adjustable. With analysis, it can be shown that output voltage (ν_0) is given by

$$v_{O} = \frac{R_{4}}{R_{3}} \left(1 + \frac{2R_{2}}{R_{1} + R_{1POT}} \right) (v_{I2} - v_{I1})$$

- (i) With $R_3 = R_4 = 100 \text{ k}\Omega$, design an instrumentation amplifier using the circuit as shown in the Figure 8 to realize a differential voltage gain (A_v) adjustable from 10 to 100. (Hints: A_v is smallest when R_{1POT} is at maximum value, and vice versa. You are required to determine the value of R_1 and R_2 in the circuit). [7 marks]
- (ii) Calculate A_v and v_0 when $v_{I1} = 1.45$ V, $v_{I2} = 1.13$ V, $R_4 = 2 R_3$, R_{1POT} is set at 40 k Ω , and the values of R_1 and R_2 are found in step (i) above. [3 marks]

-END OF QUESTION PAPER-

Page 8 of 9

APPENDIX:

A) BASIC FORMULA FOR TRANSISTOR

BJT

$$i_C = I_S e^{v_{BE}/V_T}$$
; NPN
 $i_C = I_S e^{v_{EB}/V_T}$; PNP
 $i_C = \beta i_B = \frac{\beta}{\beta + 1} i_E$
 $i_E = i_B + i_C$
; Small signal

$$\beta = g_m r_\pi$$
$$g_m = \frac{I_{CQ}}{V_T}$$
$$r_\pi = \frac{\beta V_T}{I_{CQ}}$$
$$r_o = \frac{V_A}{I_{CQ}}$$
$$V_T = 26 \text{ mV}$$

 $\frac{\text{MOSFET}}{\text{; N} - \text{MOSFET}}$ $v_{DS}(\text{sat}) = v_{GS} - V_{TN}$ $i_D = K_n [v_{GS} - V_{TN}]^2$ $K_n = \frac{\mu_n C_{ox} W}{2L} = \frac{k'_n}{2} \cdot \frac{W}{L}$; P - MOSFET $v_{SD}(\text{sat}) = v_{SG} + V_{TP}$ $i_D = K_p [v_{SG} + V_{TP}]^2$ $K_p = \frac{\mu_p C_{ox} W}{2L} = \frac{k'_p}{2} \cdot \frac{W}{L}$; Small signal $g_m = 2\sqrt{K_n I_{DQ}} \quad ; \text{N} - \text{MOSFET}$ $g_m = 2\sqrt{K_p I_{DQ}} \quad ; \text{P} - \text{MOSFET}$ $r_o \cong \frac{1}{\lambda I_{DQ}}$

B) <u>HYBRID-π EQUIVALENT CIRCUITS</u>

$$Ax^{2} + Bx + C = 0 \qquad \rightarrow \quad x = \frac{-B \pm \sqrt{B^{2} - 4AC}}{2A}$$

Page 9 of 9