Name:

Student ID Number:

Section Number: 01/02/03/04 A/B

Lecturer: Dr Jamaludin/ Dr Jehana Ermy/

Dr Azni Wati

Table Number:

College of Engineering

Department of Electronics and Communication Engineering

Test 1 – With Model Answer

SEMESTER 2, ACADEMIC YEAR 2016/2017

Subject Code	•	EEEB273
Course Title	:	Electronics Analysis & Design II
Date	•	19 November 2016
Time Allowed	•	2 hours

Instructions to the candidates:

- 1. Write your Name and Student ID Number. Indicate your Section Number and Lecturer's Name. Write also your Table Number.
- 2. Write all your answers using pen. DO NOT USE PENCIL except for the diagram.
- 3. **ANSWER ALL QUESTIONS. Show clearly** all your calculations. Every value must be written with its correct Unit.

4. WRITE YOUR ANSWER ON THIS QUESTION PAPER.

NOTE: DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO.

Question Number	Q1	Q2	Q3	Total
Marks				

QUESTION 1 [40 marks]

- (a) Consider the three-transistor BJT current source as in Figure 1(a). All transistors have $V_{BE}(\mathbf{on}) = 0.6 \text{ V}$ and $V_A = 120 \text{ V}$. Transistors Q_1 and Q_2 are identical with $\beta = 80$, while Q_3 has $\beta_3 = 50$. Given $V^+ = 10 \text{ V}$, V = -10 V, and $I_O = 0.70 \text{ mA}$.
 - (i) **Calculate** <u>all</u> transistor currents in the circuit, I_{REF} , and R_1 . [12 marks]
 - (ii) What is the minimum voltage at V_{C2} ? [2 marks]
 - (iii) **How much** reference current differs from the bias current? [2 marks]
 - (iv) Describe any similarity and difference of this current source with the Wilson current source. [4 marks]

Answers for Question 1(a)

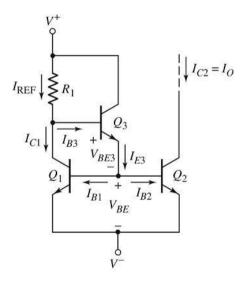


Figure 1(a)

Answers for Question 1(a) (Continued)

Answers for Question 1(a)

(i)	Calcu	llate <u>all</u> transistor currents in the circuit, I_{REF} , and R_1		[12 marks]
	I_{B1}	$=I_{B2}$	[1]	
	I_O	$=\beta I_{B2} \rightarrow I_{B2} = I_O / \beta = 0.7 \text{m}/80 = 8.75 \text{uA}$	[1.5]	
	I_{C1}	$=\beta I_{B2} \rightarrow I_{C1} = I_O = 0.7 \text{mA}$	[1]	
	I_{E3}	$= 2 I_{B2} = 2(8.75 \mathrm{u}) = 17.5 \mathrm{uA}$	[1]	
	I_{B3}	$= I_{E3} / (1 + \beta_3) = 17.5 \text{u}/51 = 0.3431 \text{uA}$	[1.5]	
	I _{REF}	$= I_{C1} + I_{B3} = 0.7 \text{m} + 0.3431 \text{u} = 700.3431 \text{u} \text{A}$	[2]	
	R_1	$= (V^+ - 2V_{BE}(\text{on}) - V^-) / I_{REF}$	[2]	
		= (20 - 2(0.6)) / (0.7003431m)	[2]	
		$=$ 26.84 k Ω		
(ii)	What	is the minimum voltage at V_{C2} ?		[2 marks]
	$V_{C2} =$	$V^{-} + v_{CE2(min)} = -10 + 0.6 = -9.4 V$	[2]	
(iii)	How	much reference current differs from the bias current?		[2 marks]
	I _{REF} is	30.049% higher than I_O OR differs $0.3431uA$	[2]	
(iv)	Descr	ibe any similarity and difference of this current	source	with the Wilson current
	source.			[4 marks]
	1) V	ery close approximation of I_O to I_{REF}	[2]	
	2) Lo	ower output resistance by a factor of $(\beta/2)$.	[2]	

(b) Study a multi-transistor BJT current mirror shown in Figure 1(b) thoroughly and carefully. With circuit analysis, load current for a mirror transistor Q_N can be found using

$$I_{ON} = \frac{I_{REF}}{1 + \frac{(1+N)}{\beta}}$$

where *N* is the total number of <u>equivalent</u> mirror transistors inside Q_1 to Q_N in the circuit. Every <u>equivalent</u> mirror transistor is matching with the reference transistor Q_R .

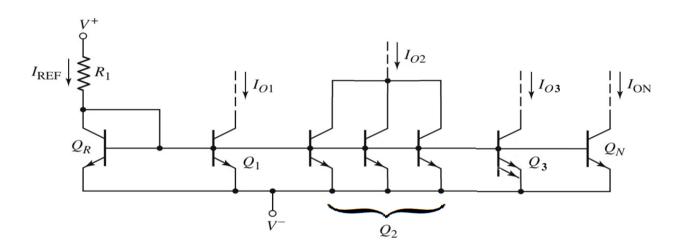


Figure 1(b)

All transistors have $V_{BE}(\mathbf{on}) = 0.7 \text{ V}$, $\beta = 40$, and $V_A = 150 \text{ V}$. Given $V^+ = 10 \text{ V}$, V = -10 V, and $R_1 = 10 \text{ k}\Omega$.

(i) What is the total number of <u>equivalent</u> mirror transistors (*N*) in the circuit?

[4 marks]

- (ii) Calculate I_{REF} , I_{O1} , I_{O2} , I_{O3} , and I_{ON} in the circuit. [12 marks]
- (iii) Find output resistance of the current mirror at transistor Q_3 (i.e. R_{03}). [4 marks]

Answers for Question 1(b)

Answers for Question 1(b) (Continued)

Answers for Question 1(b)

- (i) What is the total number of <u>equivalent</u> mirror transistors (*N*) in the circuit? [4 marks] N = 1 (for Q1) + 3 (for Q2) + 2 (for Q3) + 1 (for QN) = 7 [4]
- (ii) Calculate I_{REF} , I_{O1} , I_{O2} , I_{O3} , and I_{ON} in the circuit. [12 marks] $I_{REF} = (V^+ - V_{BE}(\text{on}) - V^-) / R_1$ [2] = (10 - 0.7 - (-10)) / (10k) = 1.93 mA [2]

I_{ON}	$= I_{REF} / (1 + (1 + N) / \beta)$				
	= (1.93 mA) / (1 + (1 + 7) / 40)		= 1.608 mA	[2] *Note	
<i>I</i> ₀₁	$= I_{ON}$		= 1.608 mA	[2] *Note	
I_{02}	$= 3 I_{ON}$	= 3x1.608 mA	= 4.824 mA	[2] *Note	
<i>I</i> ₀₃	$= 2 I_{ON}$	= 2x1.608 mA	= 3.216 mA	[2] *Note	

*Note: If answer for 1(b)(i) is not N = 7, may give [1.5 marks] for values of I_{O1} , I_{O2} , I_{O3} , and I_{ON} based value of N given in 1(b)(i) on condition that respective **formula** is correct.

(iii) Find output resistance of the current mirror at transistor Q_3 (i.e. R_{O3}). [4 marks] $R_{O3} = V_A / I_{O3}$ [2]

= 150/3.216m = 46.6418 k Ω [2]

QUESTION 2 [30 marks]

Figure 2 shows a MOSFET cascode current source with all transistors are regarded as identical. The transistor parameters are: $V_{TN} = 0.5$ V, $K_n = 80 \ \mu A/V^2$, and $\lambda = 0.02$ V⁻¹. The circuit parameters are: $V^+ = +7$ V, $V^- = -7$ V, and $I_{REF} = 120 \ \mu A$.

(a) Calculate the V_{GS} of each transistor and I_0 .

[10 marks]

- (b) If I_{REF} symbol in the Figure 2 is replaced by another MOSFET transistor M_5 (but M_5 is NOT identical to M_1 to M_4) to act like a resistor, what is the value of V_{GS5} ? [4 marks]
- (c) **Determine** the percent change in I_0 as V_{D4} changes from -3 V to +3 V. [16 marks]

Answers for Question 2

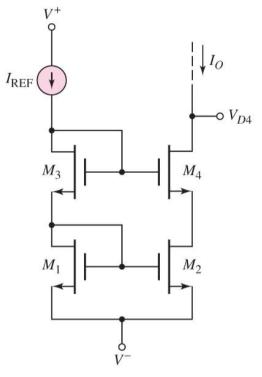


Figure 2

Answers for Question 2 (Continued)

(a) Using the formula of
$$I_D = K_n (V_{GS} - V_{TN})^2$$
 [2 marks]

$$I_{REF} = K_n (V_{GS1} - V_{TN})^2 \rightarrow 120 \mu = 80 \mu (V_{GS1} - 0.5)^2$$
 [2 marks]

$$V_{GS1} = 1.7247 \text{ V}$$
 [2 marks]

$$V_{GS2} = V_{GS3} = V_{GS4} = V_{GS1} = 1.7247 \text{ V}$$
 [2 marks]

$$I_0 = I_{D4} = I_{D2} = K_n (V_{GS} - V_{TN})^2 = 120 \ \mu \text{A}$$
 [2 marks]

(b)
$$V^+ - V_{GS5} - V_{GS3} - V_{GS1} = V$$
 [2 marks]

$$V_{GS5} = V^+ - V_{GS3} - V_{GS1} - V^- = 7 - 1.7247(2) - (-7) = 10.5506 V$$
 [2 marks]

(c)
$$R_O = r_{O4} + r_{O2}(1+g_m r_{O4})$$
 [2 marks]
OR $R_O \approx g_m r_{O4} r_{O2}$

[Because approximation was also taught in the lecture]

$$g_m = 2\sqrt{K_n I_0} = 2\sqrt{(0.08m)(0.12m)} = 0.19596\frac{mA}{v}$$
 [2 marks]

$$r_{O2} = r_{O4} = \frac{1}{\lambda I_O} = \frac{1}{(0.02)(0.12m)} = 416.666 \ k\Omega$$
[2 marks]

 $R_{O} = 416.666\text{k} + 416.666\text{k}[1+(0.19596\text{m})(416.666\text{k})] = 34.854 \text{ M}\Omega \text{ [2 marks]}$ OR $R_{O} = (0.19596\text{m})(416.666\text{k})(416.666\text{k}) = 34.02 \text{ M}\Omega$

$$\Delta I_0 = \frac{\Delta V_{D4}}{R_0} = \frac{3 - (-3)}{34.854M} = 0.1721 \,\mu A$$
[2, 2 marks]

OR
$$\Delta I_0 = \frac{\Delta V_{D4}}{R_0} = \frac{3 - (-3)}{34.02M} = 0.1764 \,\mu A$$

$$\therefore \frac{\Delta I_O}{I_O} \times 100\% = \frac{0.1721\mu}{120\mu} \times 100\% = 0.1434\%$$
[2, 2 marks]

OR
$$\therefore \frac{\Delta I_O}{I_O} \times 100\% = \frac{0.1764\mu}{120\mu} \times 100\% = 0.1469\%$$

[6 marks]

QUESTION 3 [30 marks]

Figure 3 shows a circuit diagram for a BJT differential amplifier biased with a current source to provide bias current I_Q . Study the circuit diagram carefully. Transistor parameters are $V_{BE}(\mathbf{on}) = 0.7 \text{ V}, \beta = \infty$, and $V_A = \infty$.

For the circuit diagram also, voltages measured at v_{C1} and v_{C2} are 4.5 V respectively.

(a)	Calculate the values for v_{cm} and v_d .	[6 marks]
(b)	Determine the value of I_Q .	[6 marks]
(c)	Find the value for v_{CE2} .	[6 marks]
(d)	Determine the differential-mode voltage gain (A_d) of the difference voltage g	fferential amplifier for a one-
	sided output taken at $v_{C2.}$	[6 marks]
(e)	Draw and label clearly the <u>full circuit diagram</u> if the different	ntial amplifier is biased with a

Show clearly all your calculations. Every parameter must be written with its correct Unit.

Answers for Question 3

Widlar current source.

(a)	From Figure 3:	
	$v_{B1} = v_{B2} = 0 \mathbf{V}$	[2]
	$v_{cm} = (v_{B1} + v_{B2})/2 = 0$ V	[2]
	$v_d = v_{B1} - v_{B2} = 0 \mathbf{V}$	[2]

- (b) Given: $v_{C1} = v_{C2} = 4.5 \text{ V}$ $10 - I_{C1}R_C = v_{C1} = 4.5 \text{ V}$ [2] $I_{C1} = 0.55 \text{ mA} = I_{C2}$ [2] $I_Q = I_{C1} + I_{C2} = 1.1 \text{ mA}$ [2]
- (c) Given: $v_{C2} = 4.5 \text{ V}$ $v_{CE2} = v_{C2} - v_E$ [2] $v_E = v_{B2} - V_{BE}(\text{on}) = 0 - 0.7 = -0.7 \text{ V}$ [2, 1] $v_{CE2} = v_{C2} - v_E = 4.5 - (-0.7) = 5.2 \text{ V}$ [1]
- (d) $A_d = (g_{m2} R_C)/2$ [2]
 - $g_{m2} = I_{C2} / V_T$ [2] = 0.55m/26m = 21.153 mA/V [1] $A_d = (g_{m2} R_C)/2$

$$= (21.153 \text{m x } 10 \text{k})/2 = 105.76$$
[1]

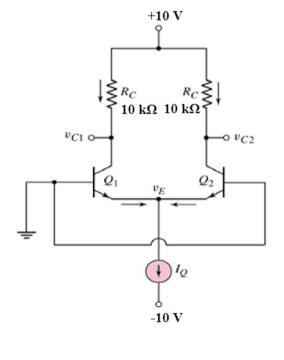
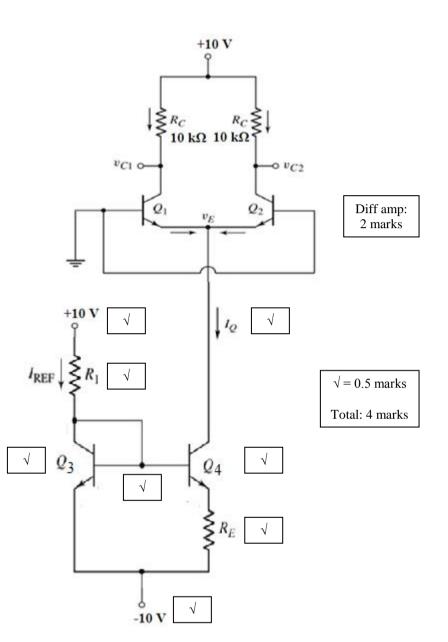



Figure 3

Answers for Question 3 (Continued)

(e)

BASIC FORMULA FOR TRANSISTOR

<u>BJT</u>

$$i_{C} = I_{S} e^{v_{BE}/V_{T}}; \text{npn}$$
$$i_{C} = I_{S} e^{v_{EB}/V_{T}}; \text{pnp}$$
$$i_{C} = \alpha i_{E} = \beta i_{B}$$
$$i_{E} = i_{B} + i_{C}$$
$$\alpha = \frac{\beta}{\beta + 1}$$

;Small signal

 $\beta = g_m r_\pi$ $g_m = \frac{I_{CQ}}{V_T}$ $r_\pi = \frac{\beta V_T}{I_{CQ}}$ $r_o = \frac{V_A}{I_{CQ}}$ $V_T = 26 \text{ mV}$

MOSFET

; N – MOSFET

$$v_{DS}$$
 (sat) = $v_{GS} - V_{TN}$
 $i_D = K_n [v_{GS} - V_{TN}]^2$
 $K_n = \frac{k'_n}{2} \cdot \frac{W}{L}$

; P – MOSFET

$$v_{SD}(\text{sat}) = v_{SG} + V_{TP}$$

 $i_D = K_p [v_{SG} + V_{TP}]^2$
 $K_p = \frac{k'_p}{2} \cdot \frac{W}{L}$

;Small signal

$$g_m = 2\sqrt{K_{\gamma}I_{DQ}}$$

 $r_o \cong \frac{1}{\lambda I_{DQ}}$

Quadratic formula :

$$Ax^{2} + Bx + C = 0 \rightarrow x = \frac{-B \pm \sqrt{B^{2} - 4AC}}{2A}$$