

College of Engineering

Department of Electronics and Communication Engineering

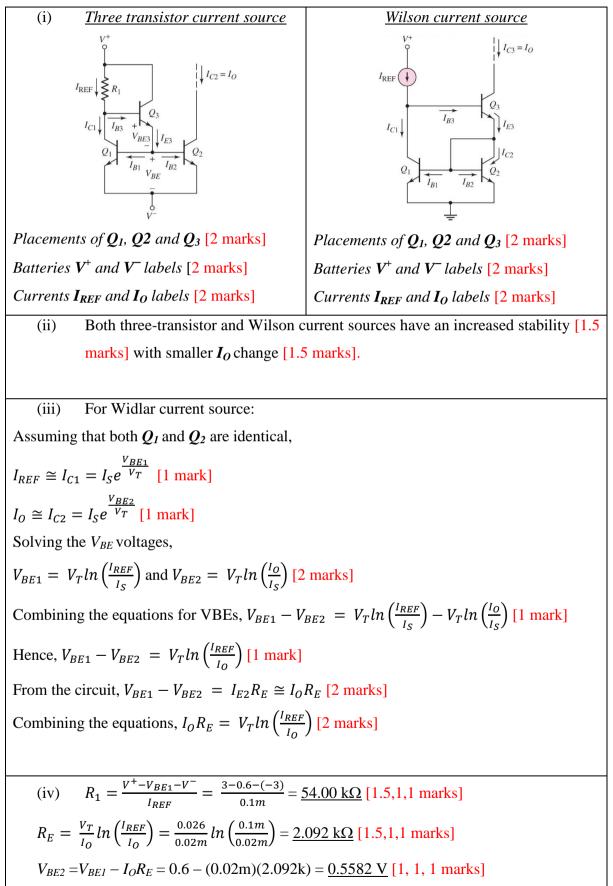
Test 1 (Solution)

SEMESTER 1, ACADEMIC YEAR 2017/2018

Subject Code	•	EEEB273
Course Title	:	Electronics Analysis & Design II
Date	•	8 July 2017
Time Allowed	•	2 hours

Instructions to the candidates:

- 1. Write your Name and Student ID Number. Indicate your Section Number and Lecturer's Name. Write also your Table Number.
- 2. Write all your answers using pen. DO NOT USE PENCIL except for the diagram.
- 3. **ANSWER ALL QUESTIONS. Show clearly** all your calculations. Every value **must** be written with its correct Unit.
- 4. WRITE YOUR ANSWER ON THIS QUESTION PAPER.


NOTE: DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO.

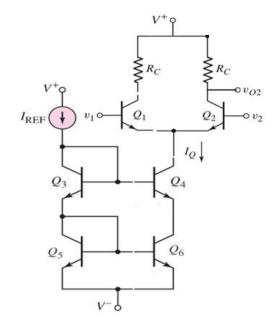
Question Number	Q1	Q2	Q3	Q4	Total
Marks					

Answers for Question 2

Question 2(a)

VDS2 (min) = VD2 - VS2 = $-2.1 - (-3) = 0.9V = V$ VDS2(sat) = VGS2 - VTN VGS2 = VDS2(sat) + VTN = $0.9 + 0.5 = 1.4V$ From circuit, <u>VGS1 = VGS2 = $1.4V$</u>	DS2(sat) [2] [1] [1]
Io= ID2 = $(\frac{1}{2}\mu_n C_{ox})(W/L)_2(VGS2 - VTN)^2$ = $(50 \ \mu)(35)(1.4-0.5)^2 = \underline{1.418mA}$ IREF = ID1 = $(\frac{1}{2}\mu_n C_{ox})(W/L)_I(VGS1 - VTN)^2$ = $(50 \ \mu)(20)(1.4-0.5)^2 = \underline{0.810mA}$	[2]
ID3=ID4=IREF = 0.810mA [1] ID3 = 0.810mA = $(\frac{1}{2}\mu_n C_{ox})(W/L)_3(VGS3 - VTN)$ = (50 μ)(5)(VGS3-0.5) ² <u>VGS3 = 2.3V</u> [2] ID4 = 0.810mA = $(\frac{1}{2}\mu_p C_{ox})(W/L)_4(VSG4 + VTP)$ = (20 μ)(10)(VSG4+ (-0.55) ² <u>VSG4 = 2.562V</u> [2]	

Question 2(b)


dIo = dVD2/RO [1]dVD2 = 0.4 - (-1.6) = <u>**2V**</u>[1]Ro = ro2 $ro2 = 1/(<math>\lambda$ n)(ID2) = 1/(0.02)(1.418m) = <u>**35.26k\Omega**</u>[2] dIo = 2/35.26k = <u>**56.72uA**</u>[1]

Question 2(c)

Io' = Io + dIo [1]= 1.418mA + 56.72uA=**1.475mA**[2]

Answers for Question 3

(a)

(b)
$$I_{C2} = I_Q / 2 = 0.5 \text{m} / 2 = 0.25 \text{ mA}$$
 [2]
 $R_C = [V^+ - v_{o2}] / I_{C2}$ [2]
 $= [12 - 0.4] / 0.25m = 46.4k\Omega$ [2]

(c)
$$v_d = v_1 - v_2$$
 [2]
 $v_d = (250 - 150) \sin \omega t \, \mu V = 100 \sin \omega t \, \mu V$ [2]

(d)
$$v_{cm} = (v_1 + v_2)/2$$

= [(250+150)/2] sin $\omega t \ \mu V = 200 \ sin \ \omega t \ \mu V$

(e)
$$v_o = A_d v_d + A_{cm} v_{cm}$$
 [2]
 $v_o = (223) \ 100 \ sin \ \omega t \ \mu V + (-10)(\ 200 \ sin \ \omega t \ \mu V)$ [2]
 $= (22.3m - 2m) \ sin \ \omega t \ V = 20.3 \ sin \ \omega t \ mV$ [2]

[2] [2]

Answers for Question 4

$$V_{o} = \frac{\beta R_{C}}{2(r_{\pi} + R_{B})} V_{d} - \frac{\beta R_{C}}{r_{\pi} + R_{B} + 2(1 + \beta)R_{o}} V_{cm}$$

$$R_{B} = 0$$

$$\Rightarrow V_{o} = \frac{\beta R_{C}}{2r_{\pi}} V_{d} - \frac{\beta R_{C}}{r_{\pi} + 2(1 + \beta)R_{o}} V_{cm}$$
[2]

$$V_o = A_d V_d + A_{cm} V_{cm}$$
^[2]

$$A_{d} = \frac{\beta R_{C}}{2r_{\pi}} = \frac{g_{m}r_{\pi}R_{C}}{2r_{\pi}} = \frac{g_{m}R_{C}}{2}$$
[2]

$$g_m = \frac{I_Q}{2V_T} = \frac{(0.8\text{m})}{2(0.026)} = 15.384 \text{ mA/V}$$
 [2]

$$r_{\pi} = \frac{2V_T \beta}{I_Q} = \frac{2(0.026)(100)}{(0.8\text{m})} = 6.5 \text{ k}\Omega$$

$$\Rightarrow A_d = \frac{g_m R_C}{2} = \frac{I_{CQ} R_C}{2V_T} = \frac{I_Q R_C}{2(2V_T)} = \frac{I_Q R_C}{4V_T} = \frac{(0.8)(12k)}{4(0.026)} = 92.3$$
[2]

$$A_{cm} = \frac{-\beta R_C}{r_{\pi} + 2(1+\beta)R_o}$$
[2]

$$\Rightarrow A_{cm} = \frac{-\beta R_{c}}{r_{\pi} + 2(1+\beta)R_{o}} = \frac{-g_{m}R_{c}}{1 + \frac{2(1+\beta)R_{o}g_{m}}{\beta}} = \frac{-\frac{I_{Q}}{2V_{T}}R_{c}}{1 + \frac{2(1+\beta)R_{o}}{\beta}\frac{I_{Q}}{2V_{T}}} = -0.237$$
[2]

[2]

$$CMRR = \left| \frac{A_d}{A_{cm}} \right| = \left| \frac{92.3}{-0.237} \right| = 389$$
 [4]