Name:

Student ID Number:

Section Number: 01/02/03/04/05/06 A/B

Lecturer: Dr Azni Wati/ Dr Fazrena Azlee/

Dr Jehana Ermy/ Dr Jamaludin

Table Number:

College of Engineering

Department of Electronics and Communication Engineering

Test 1

SEMESTER 1, ACADEMIC YEAR 2017/2018

Subject Code	•	EEEB273
Course Title	•	Electronics Analysis & Design II
Date	•	8 July 2017
Time Allowed	•	2 hours

Instructions to the candidates:

- 1. Write your Name and Student ID Number. Indicate your Section Number and Lecturer's Name. Write also your Table Number.
- 2. Write all your answers using pen. DO NOT USE PENCIL except for the diagram.
- 3. **ANSWER ALL QUESTIONS. Show clearly** all your calculations. Every value **must** be written with its correct Unit.

4. WRITE YOUR ANSWER ON THIS QUESTION PAPER.

NOTE: DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO.

Question Number	Q1	Q2	Q3	Q4	Total
Marks					

QUESTION 1 [35 marks]

- (a) Draw the BJT three-transistor and Wilson current sources with clear details of the transistors Q_1 , Q_2 and Q_3 placements. [12 marks]
- (b) What are the applications of the BJT three-transistor and Wilson current sources?

[3 marks]

- (c) Figure 1 shows a Widlar current source. Derive an equation that gives the relationship between the reference current, I_{REF} , and the load current, I_O . [10 marks]
- (d) Consider a Widlar current source with circuit parameters of $V^+ = 3 V$, V = -3 V, $V_{BEI}(on) = 0.6 V$, and $V_A = \infty$. Design the circuit such that $I_O = 20 \mu A$ and $I_{REF} = 100 \mu A$. Neglect the base currents. [10 marks]

Figure 1

Answers for Question 1 (Continued)

QUESTION 2 [20 marks]

For a **MOSFET current source** shown in **Figure 2** the circuit parameters are: $V^+ = 3$ V and $V^- = -3$ V. Transistor parameters for N-MOSFET are: $V_{TN} = 0.5$ V, $\frac{1}{2}\mu_n C_{ox} = 50 \ \mu A/V^2$ and $\lambda_n = 0.02$ V⁻¹; and the transistor parameters for P-MOSFET are: $V_{TP} = -0.55$ V, $\frac{1}{2}\mu_p C_{ox} = 20 \ \mu A/V^2$ and $\lambda_p = 0.03$ V⁻¹. The transistor aspect ratios are: $(W/L)_I = 20$, $(W/L)_2 = 35$, $(W/L)_3 = 5$ and $(W/L)_4 = 10$.

- (a) Find *I_O*, *I_{REF}* and the *V_{GS}* voltages for all transistors if the minimum voltage at the drain of transistor *M*₂, i.e. *V_{D2}* is -2.1V.
 [12 marks]
- (b) Calculate the change in the output current, dI_o if V_{D2} varies from -1.6V to 0.4V.

[5 marks]

(c) From the answer calculated in (b) find the output current, I_o in this condition when V_{D2} varies from -1.6V to 0.4V. [3 marks]

Figure 2

Answers for Question 2 (Continued)

QUESTION 3 [25 marks]

The BJT differential amplifier in Figure 3 is biased by a Cascode current source. Let the biasing current, I_Q , from the current source is 0.5 mA. The transistor parameters for the circuit shown are $\beta = 180$, $V_{BE}(on) = 0.7$, and $V_A = \infty$ for Q_1 and Q_2 . The differential-mode voltage gain, A_d , is 223 while the common-mode voltage gain A_{cm} , is -10.

- (a) Redraw the circuit incorporating the Cascode current source. [5 marks]
- (b) Design the differential amplifier such that $v_{o2} = 0.4$ V for $v_1 = v_2 = 0$. [6 marks]
- (c) Calculate the differential-mode input voltage, v_d . [4 marks]
- (d) Calculate the common-mode input voltage, v_{cm} . [4 marks]
- (e) Calculate the output voltage, v_o , due to $v_1 = 250 \sin \omega t \mu V$ and $v_2 = 150 \sin \omega t \mu V$.

[6 marks]

Figure 3

Answers for Question 3 (Continued)

QUESTION 4 [20 marks]

For a **BJT differential amplifier** in **Figure 4** (a) we can use **Figure 4** (b) to perform the small-signal circuit analysis.

With small-signal circuit analysis, we can derive that **one-sided output voltage** (V_o) taken at V_{c2} is given by the following equation:

$$V_{o} = \frac{\beta R_{C}}{2(r_{\pi} + R_{B})} V_{d} - \frac{\beta R_{C}}{r_{\pi} + R_{B} + 2(1 + \beta)R_{o}} V_{cm}$$

where V_d is differential-mode input voltage, V_{cm} is common-mode input voltage, R_B is output resistance for input signals V_{b1} and V_{b2} , and R_o is output resistance looking into the constantcurrent source that is biasing the diff-amp.

Consider the circuit in the Figure 4 (a) with parameters $V^+ = 10$ V, $V^- = -10$ V, $I_Q = 0.8$ mA, and $R_C = 12$ k Ω . Transistor parameters are $\beta = 100$ and $V_A = \infty$. Assume $R_o = 25$ k Ω and $R_B = 0$.

Calculate differential-mode gain (A_d) , common-mode gain (A_{cm}) , and the common-moderejection ratio (*CMRR*) of the diff-amp.[20 marks]

BASIC FORMULA FOR TRANSISTOR

$$\underline{BJT}$$

$$i_{C} = I_{S} e^{v_{BE}/V_{T}}; npn$$

$$i_{C} = I_{S} e^{v_{EB}/V_{T}}; pnp$$

$$i_{C} = \alpha i_{E} = \beta i_{B}$$

$$i_{E} = i_{B} + i_{C}$$

$$\alpha = \frac{\beta}{\beta + 1}$$

;Small signal

$$\beta = g_m r_\pi$$
$$g_m = \frac{I_{CQ}}{V_T}$$
$$r_\pi = \frac{\beta V_T}{I_{CQ}}$$
$$r_o = \frac{V_A}{I_{CQ}}$$
$$V_T = 26 \text{ mV}$$

MOSFET

- ; N MOSFET v_{DS} (sat) = $v_{GS} - V_{TN}$ $i_D = K_n [v_{GS} - V_{TN}]^2$ $K_n = \frac{k'_n}{2} \cdot \frac{W}{L}$
- ; P MOSFET $v_{SD}(\text{sat}) = v_{SG} + V_{TP}$ $i_D = K_p [v_{SG} + V_{TP}]^2$ $K_p = \frac{k'_p}{2} \cdot \frac{W}{L}$

;Small signal

$$g_m = 2\sqrt{K_n I_{DQ}}$$
; N - MOSFET
 $g_m = 2\sqrt{K_p I_{DQ}}$; P - MOSFET
 $r_o \cong \frac{1}{\lambda I_{DQ}}$

Quadratic formula :

$$Ax^{2} + Bx + C = 0 \quad \rightarrow \quad x = \frac{-B \pm \sqrt{B^{2} - 4AC}}{2A}$$