Name:

Student ID Number:

Section Number: 01/02/03/04/05/06 A/B

Lecturer: Dr Azni Wati/ Dr Fazrena Azlee/

Dr Jehana Ermy/ Dr Jamaludin

Table Number:

College of Engineering

Department of Electronics and Communication Engineering

Test 2

SEMESTER 1, ACADEMIC YEAR 2017/2018

Subject Code	•	EEEB273
Course Title	:	Electronics Analysis & Design II
Date	•	19 August 2017
Time Allowed	•	2 hours

Instructions to the candidates:

- 1. Write your Name and Student ID Number. Indicate your Section Number and Lecturer's Name. Write also your Table Number.
- 2. Write all your answers using pen. DO NOT USE PENCIL except for the diagram.
- 3. **ANSWER ALL QUESTIONS. Show clearly** all your calculations. Every value **must** be written with its correct Unit.

4. WRITE YOUR ANSWER ON THIS QUESTION PAPER.

NOTE: DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO.

Question Number	Q1	Q2	Q3	Q4	Total
Marks					

APPENDIX

A) <u>BASIC FORMULA FOR TRANSISTOR</u> <u>BJT</u> $i_C = I_S e^{v_{BE}/V_T}$; NPN

$$i_C = I_S e^{v_{EB}/V_T}$$
; PNP
 $i_C = \beta i_B = \frac{\beta}{\beta + 1} i_E$
 $i_E = i_B + i_C$

;Small signal

$$\beta = g_m r_\pi$$
$$g_m = \frac{I_{CQ}}{V_T}$$
$$r_\pi = \frac{\beta V_T}{I_{CQ}}$$
$$r_o = \frac{V_A}{I_{CQ}}$$
$$V_T = 26 \text{ mV}$$

$$\frac{\text{MOSFET}}{\text{; N-MOSFET}}$$

$$v_{DS}(\text{sat}) = v_{GS} - V_{TN}$$

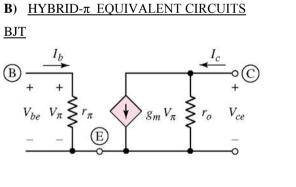
$$i_D = K_n [v_{GS} - V_{TN}]^2$$

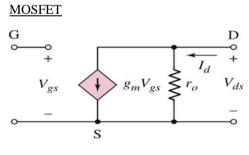
$$K_n = \frac{\mu_n C_{ox} W}{2L} = \frac{k'_n}{2} \cdot \frac{W}{L}$$

$$; \text{P-MOSFET}$$

$$v_{SD}(\text{sat}) = v_{SG} + V_{TP}$$

$$i_D = K_p [v_{SG} + V_{TP}]^2$$


$$K_p = \frac{\mu_p C_{ox} W}{2L} = \frac{k'_p}{2} \cdot \frac{W}{L}$$


$$; \text{Small signal}$$

$$g_m = 2\sqrt{K_n I_{DQ}} \quad ; \text{N-MOSFET}$$

$$g_m = 2\sqrt{K_p I_{DQ}} \quad ; \text{P-MOSFET}$$

$$r_o \cong \frac{1}{\lambda I_{DQ}}$$

C) <u>QUADRATIC FORMULA</u>

$$Ax^{2} + Bx + C = 0 \qquad \rightarrow \quad x = \frac{-B \pm \sqrt{B^{2} - 4AC}}{2A}$$

QUESTION 1 [20 marks]

The differential amplifier in **Figure 1** has a pair of transistors forming an active load. A twotransistor current source is added to bias a constant current source of **0.25 mA**. (Note: $I_Q = 0.25$ **mA**). The transistor parameters are $\beta = 100$, V_{BE} (on) = V_{EB} (on) = 0.7 V, $V_{AN} = 120$ V, and $V_{AP} = 100$ V.

- (i) Draw a complete circuit for **Figure 1** with the active load and the bias circuit. **[5 marks]**
- (ii) Determine the differential-mode voltage gain, $A_d = v_0/v_d$. [10 marks]
- (iii) Calculate the differential-mode voltage gain if the load resistance, R_L , is 150 k Ω .

[5 marks]

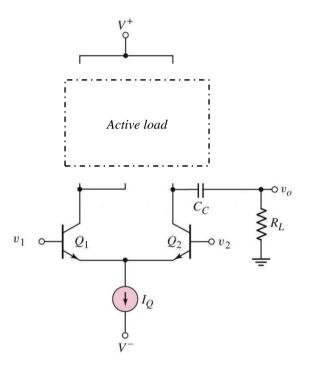


Figure 1

Answers for Question 1 (continued)

QUESTION 2 [35 marks]

The MOSFET differential amplifier shown in Figure 2 below is connected to supply voltages of $V^+ = +5V$ and $V^- = -5V$. The value of R_{set} is 15 k Ω . Transistor parameters for **N-MOSFET** are: $V_{TN} = 2 V$, $k_n' = 40 \ \mu A/V^2$ and $\lambda_n = 0.01 V^{-1}$; and the transistor parameters for **P-MOSFET** are: $V_{TP} = -2 V$, $k_p' = 20 \ \mu A/V^2$ and $\lambda_p = 0.02 V^{-1}$. The transistor aspect ratios are $(W/L)_{A,B} = 20$,

$$(W_L)_{C,D} = 15 \text{ and } (W_L)_{E,F} = 10.$$

- (a) Calculate the values of I_{set} , I_Q , V_{SGA} and V_{SGC} . [12 marks]
- (b) Determine the gain of the differential amplifier. [8 marks]
- (c) Another amplifier is connected at the output of the differential amplifier as a second gain stage, to form a multistage amplifier circuit. If the second gain stage has input impedance R_{in2} of 200M Ω and gain $A_{V2} = 80$ V/V, calculate the overall gain of the multistage circuit.

[5 marks]

- (d) The biasing current source circuit generating I_Q for the differential amplifier is now changed to a Wilson current source.
 - i) Sketch the circuit in Figure 2 with its new biasing current source circuit. [5 marks]
 - Discuss the advantage and disadvantage of using the Wilson current source over the two-transistor current source for biasing the differential amplifier circuit.

[5 marks]

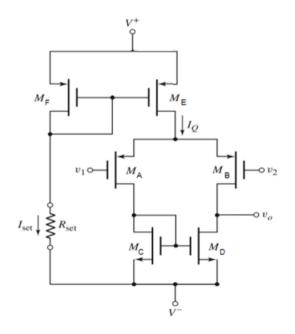


Figure 2

Answers for Question 2 (Continued)

[2 marks]

QUESTION 3 [20 marks]

Consider the **Class-** A amplifier circuit shown in Figure 3. Assume all transistors are matched with V_{BE} (on) = 0.7 V, V_{CE} (sat) = 0.38 V, and is very large β is very large. Determine the following:

- (i) The range of the maximum symmetrical output voltage swing. [4 marks]
- (ii) The required bias current I_Q for Class-A operation.
- (iii) Maximum and minimum amplifier current ($i_{E1(max)}$ and $i_{E1(min)}$). [4 marks]
- (iv) Maximum and minimum input voltage ($v_{I(max)}$ and $v_{I(min)}$). [3 marks]
- (v) Power conversion efficiency of the amplifier, η . [7 marks]

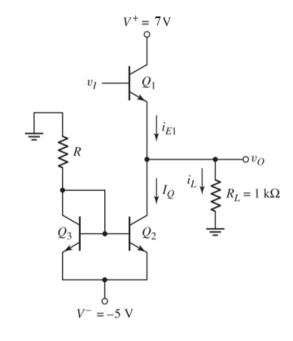
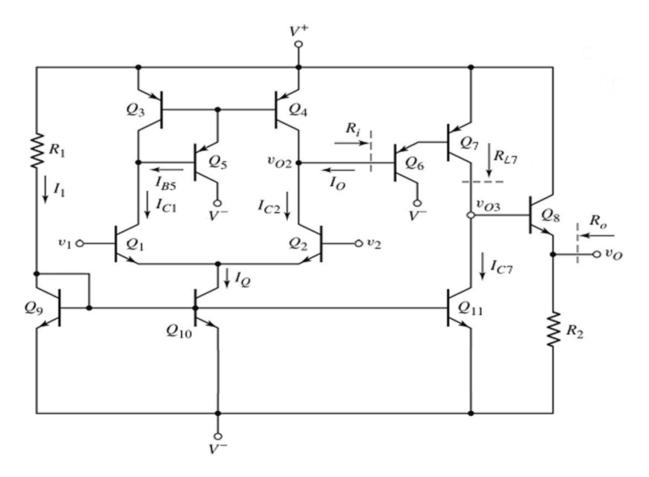


Figure 3

Answers for Question 3 (Continued)

QUESTION 4 [25 marks]


Consider the circuit shown in **Figure 4**. Study the **Figure 4** thoroughly and *notice that biasing for the amplifiers in the circuit is provided by two-transistor current mirrors*.

The circuit parameters for the Figure 4 are $I_{C7} = I_{C11} = 0.2$ mA, $I_{C8} = 1.3$ mA, and $R_2 = 12$ k Ω . Assume $\beta = 100$ for all transistors and the Early voltage for Q_{11} is 100 V.

Using small-signal analysis, the small-signal voltage gain (A_{ν}) for the **Darlington Pair** in the gain stage can be found using the following formula:

$$A_{v} = \frac{\beta(1+\beta)R_{L7}}{R_{i}}$$

Calculate the value of I_{C6} and the value of small-signal voltage gain (A_v) for the Darlington Pair in the gain stage. [25 marks]

