

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION

SEMESTER 2 2017 / 2018

PROGRAMME : Bachelor of Electrical & Electronics Engineering (Honours)

Bachelor of Electrical Power Engineering (Honours)

SUBJECT CODE : EEEB273

SUBJECT : ELECTRONIC ANALYSIS AND DESIGN II

DATE : January/February 2018

TIME : 3 hours

INSTRUCTIONS TO CANDIDATES:

- 1. This paper contains **FIVE** (5) questions in **NINE** (9) pages.
- 2. Answer **ALL** questions.
- 3. Write **all** answers in the answer booklet provided. **Use pen** to write your answer.
- 4. Write answer to different question on a new page.

THIS QUESTION PAPER CONSISTS OF NINE (9) PRINTED PAGES INCLUDING THIS COVER PAGE.

Question 1 [20 marks]

- (a) **Draw** the npn BJT **two-transistor** and **Widlar** current sources with clear details of the transistors Q_1 and Q_2 placements. [10 marks]
- (b) Show that $I_O R_E = V_T \ln \left(\frac{I_{REF}}{I_O} \right)$ for the BJT Widlar current source. [5 marks]
- (c) **Design** the BJT **Widlar** current source from your drawing in part (a) such that currents $I_{REF} = 3 \text{ mA}$ and $I_O = 50 \text{ }\mu\text{A}$. The circuit parameters are $V^+ = 10 \text{ V}$ and $V^- = -10 \text{ V}$. The transistors are matched with $V_{BE} = 0.7 \text{ V}$ at 1 mA. Neglect the base current.

[5 marks]

Question 2 [20 marks]

(a) The basic differential pair biased by a three-transistor current source is shown in Figure 1. Assume $\beta = 200$ and $V_{BE}(\mathbf{on}) = 0.7$ V for all BJTs in the circuit. For $R_1 = 10$ k Ω and $R_C = 12.8$ k Ω , find the differential voltage gain (Ad) of the differential amplifier taken as one-sided output. [10 marks]

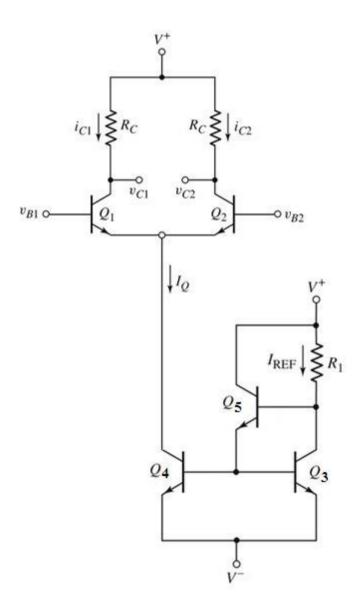


Figure 1

- (b) Figure 2 shows a differential amplifier with PNP three-transistor current mirror connected as an active load. The circuit are connected to $V^+ = 3$ V, $V^- = -3$ V, and $I_Q = 0.5$ mA. The transistors parameters are $\beta = 120$, $V_{A1} = V_{A2} = 120$ V, $V_{A3} = V_{A4} = 80$ V, and $V_{A5} = \infty$.
 - (i) **Determine** the open-circuit differential-mode voltage gain (A_d) . [5 marks]
 - (ii) What is the output resistance (R_0) of the differential amplifier? [2 marks]
 - (iii) Find the value of load resistance R_L that reduces the differential-mode gain to 75 percent of the open-circuit value. [3 marks]

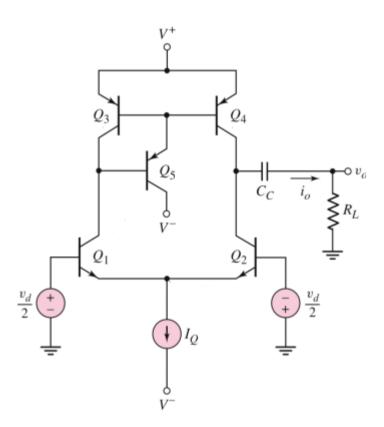


Figure 2

Question 3 [20 marks]

Consider the multi stage bipolar circuit in **Figure 3**. The transistors parameters are: $V_{BE}(\mathbf{on}) = \mathbf{0.7 \ V}, \beta = \mathbf{150}$ and $V_A = \infty$. When there is no input, $v_O = \mathbf{-0.1316 \ V}$.

- (a) **Determine** the transistor quiescent currents: I_{C2} , I_{C3} , I_{C4} , I_{C6} , and I_{C8} . [10 marks]
- (b) Assume R_{i3} is very large compared to R_5 , calculate the **overall differential mode voltage** gain (v_0/v_d) of the circuit in Figure 3. [10 marks]

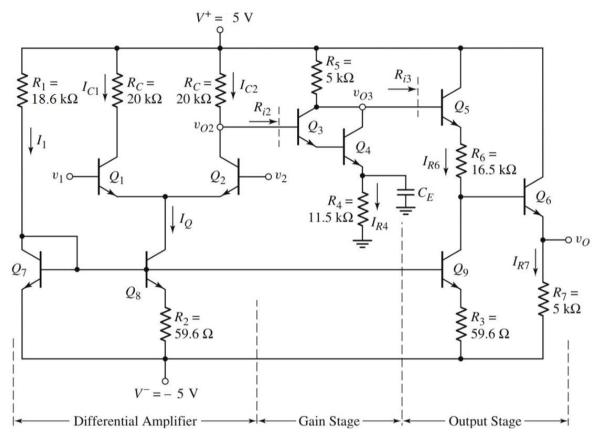


Figure 3

Question 4 [20 marks]

- (a) An **idealized class B output stage** is to deliver **10 Watts** of average power to a load for a symmetrical input sine wave. The maximum output voltage required should be **80%** of the power supply voltage V_{CC} . Given that the power supply voltage is **24 V** and the average current in the circuit is $I = V_p / (\pi R_L)$, where R_L is the load. Calculate the value of the output stage's **power conversion efficiency** η . [10 marks]
- (b) Consider the MC14573 op-amp in Figure 4. Assume transistor parameters for N-MOSFET are $V_{TN} = 0.5$ V, $K_n = 100$ μ A/V² and $\lambda_n = 0.01$ V⁻¹; and transistor parameters for P-MOSFET are $V_{TP} = -0.5$ V, $K_p = 125$ μ A/V², and $\lambda_p = 0.02$ V⁻¹. Given that $V_{SG5} = 1.5$ V:
 - (i) Find the quiescent bias currents for all transistors in the Figure 4. [4 marks]
 - (ii) Determine the overall small signal differential-mode voltage gain for the MC14573 op-amp in the Figure 4. Gain for the output stage consists of transistor M_7 and M_8 is given by equation $A_{v2} = -g_{m7}(r_{o7} \parallel r_{o8})$ [6 marks]

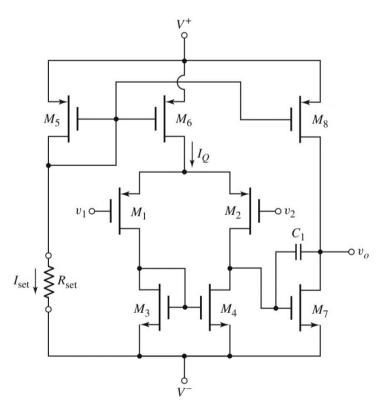


Figure 4

Question 5 [20 marks]

(a) An ideal inverting op-amp with adjustable closed-loop voltage gain is shown in Figure 5. Calculate its <u>absolute</u> minimum A_{ν} and maximum A_{ν} values when $R_1=20~{\rm k}\Omega$, potentiometer $R_{1V}=0$ to $30~{\rm k}\Omega$, $R_2=30~{\rm k}\Omega$, and potentiometer $R_{2V}=0$ to $40~{\rm k}\Omega$. [10 marks]

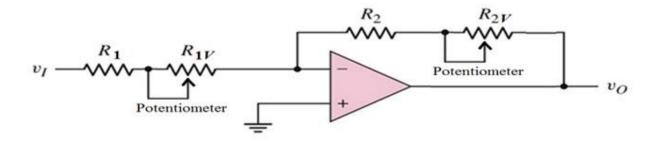


Figure 5

(b) For a **generalized summing op-amp** shown in **Figure 6** the **total output voltage** (v_O) is the **sum of the individual terms**, or

$$\begin{aligned} v_O &= -\frac{R_F}{R_1} v_{I1} - \frac{R_F}{R_2} v_{I2} + \left(1 + \frac{R_F}{R_N}\right) \left(\frac{R_P}{R_A} v_{I3} + \frac{R_P}{R_B} v_{I4}\right) \end{aligned}$$
 where
$$R_N = R_1 \|R_2$$

$$R_P = R_A \|R_B\| R_C$$

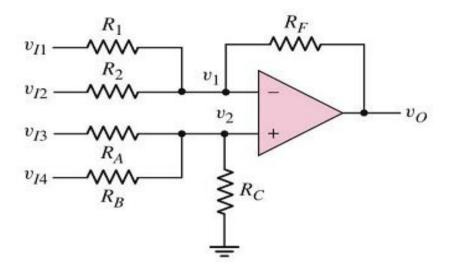


Figure 6

The summing op-amp similar to **Figure 6** is designed to produce the output of

$$v_{0} = -10v_{I1} - 5v_{I2} + 3v_{I3} + 5v_{I4}$$

Given that $R_1=50~{
m k}\Omega$ and $R_A=240~{
m k}\Omega$, calculate the value of R_2,R_B,R_C , and R_F . [10 marks]

-END OF QUESTION PAPER-

APPENDIX:

A) BASIC FORMULA FOR TRANSISTOR

BJT

$$i_C = I_S e^{v_{BE}/V_T}$$
; NPN
 $i_C = I_S e^{v_{EB}/V_T}$; PNP

$$i_C = \beta i_B = \frac{\beta}{\beta + 1} i_E$$

$$i_E = i_B + i_C$$

;Small signal

$$\beta=g_m r_\pi$$

$$g_m = \frac{I_{CQ}}{V_T}$$

$$r_{\pi} = \frac{\beta V_T}{I_{CQ}}$$

$$r_o = \frac{V_A}{I_{CO}}$$

$$V_T = 26 \,\mathrm{mV}$$

MOSFET

; N-MOSFET

$$v_{DS}(\text{sat}) = v_{GS} - V_{TN}$$

$$i_D = K_n [v_{GS} - V_{TN}]^2$$

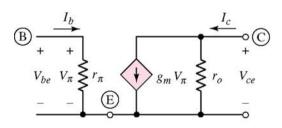
$$K_{n} = \frac{\mu_{n} C_{ox} W}{2L} = \frac{k_{n}^{'}}{2} \cdot \frac{W}{L}$$

$$v_{SD}(\text{sat}) = v_{SG} + V_{TP}$$

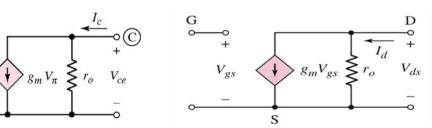
$$i_D = K_p [v_{SG} + V_{TP}]^2$$

$$K_{p} = \frac{\mu_{p} C_{ox} W}{2L} = \frac{k_{p}}{2} \cdot \frac{W}{L}$$

;Small signal


$$g_m = 2\sqrt{K_n I_{DQ}}$$
; N – M OSFET

$$g_m = 2\sqrt{K_p I_{DQ}}$$
; P-MOSFET


$$r_o \cong \frac{1}{\lambda I_{DQ}}$$

B) HYBRID-π EQUIVALENT CIRCUITS

BJT

MOSFET

C) QUADRATIC FORMULA

$$Ax^{2} + Bx + C = 0 \qquad \rightarrow \quad x = \frac{-B \pm \sqrt{B^{2} - 4AC}}{2A}$$