EEEB2	273 - Quiz 1	
SEME	STER 2, ACADEMIC	YEAR 2017/2018
Date:	24 October 2017	Time: 15 minutes

Name:		Dr JBO
Student ID Nu	umber:	Model answer
Section:	01 A/E	3
Lecturer:	Dr. Ja	maludin Bin Omar

Refer to a <u>two-transistor BJT current source</u> shown in Figure 1. All transistors are matched. The circuit parameters are: $V^+ = 7.5$ V and $V^- = -7.5$ V. The transistor parameters are: V_{BE} (on) = 0.6 V, $V_A = 150$ V, and $\beta = 50$. Output resistance (R_0) of the two-transistor BJT current source is 200 k Ω .

DESIGN the two-transistor BJT current source shown in the **Figure 1** using all the parameters given above. **Show clearly all calculations** as marks are given according to this.

[10 marks]

 $i_{C} = I_{S} e^{v_{BE}/V_{T}}; \text{npn}$ $i_{C} = I_{S} e^{v_{EB}/V_{T}}; \text{pnp}$ $i_{C} = \beta i_{B} = \frac{\beta}{1+\beta} i_{E}$ $i_{E} = i_{B} + i_{C}$

;Small signal

$$V_T = 26 \,\mathrm{mV}$$

Figure 1

Ro	$= r_{02}$	$= V_A / I_O$	[2]
I_0		$= V_A / R_O$	[1]
		= (150) / (200k)	[0.5]
		= 0.75 mA	[0.5]
I _{REF}		$=I_0\left(1+2/\beta\right)$	[2]
		= (0.75m)(1 + 2/50)	[0.5]
		= 0.78 mA	[0.5]
R_1		$= (V^+ - V_{BE} - V^-) / I_{REF}$	[2]
		= (7.5 - 0.6 - (-7.5)) / (0.78m)	[0.5]
		$= 18.4615 \text{ k}\Omega$	[0.5]

EEEB2	273 - Quiz 1	,
SEME	STER 2, ACADEMIC	YEAR 2017/2018
Date:	24 October 2017	Time: 15 minutes

Name:		Dr JBO
Student ID Nu	mber:	Model answer
Section:	01 A/B	6
Lecturer:	Dr. Ja	maludin Bin Omar

Refer to a <u>two-transistor BJT current source</u> shown in Figure 1. All transistors are matched. The circuit parameters are: $V^+ = 8$ V and $V^- = -8$ V. The transistor parameters are: V_{BE} (on) = 0.6 V, $V_A = 160$ V, and $\beta = 50$.

Output resistance (R_0) of the two-transistor BJT current source is 200 k Ω .

DESIGN the two-transistor BJT current source shown in the **Figure 1** using all the parameters given above. **Show clearly all calculations** as marks are given according to this.

[10 marks]

$$i_{C} = I_{S} e^{v_{BE}/V_{T}}; \text{npn}$$
$$i_{C} = I_{S} e^{v_{EB}/V_{T}}; \text{pnp}$$
$$i_{C} = \beta i_{B} = \frac{\beta}{1+\beta} i_{E}$$
$$i_{E} = i_{B} + i_{C}$$

;Small signal

$$V_T = 26 \,\mathrm{mV}$$

Figure 1

R_O	$= r_{02}$	$= V_A / I_0$	[2]	
Io		$= V_A / R_O$	[1]	r,
		= (160) / (200k)	[0.5]	
		= 0.80 mÅ	[0.5]	
Iref		$=I_{0}\left(1+2/\beta\right)$	[2]	r
		=(0.80 m)(1 + 2/50)	[0.5]	
		= 0.832 mA	[0.5]	
R_1		$= (V^+ - V_{BE} - V^-) / I_{REF}$	[2]	I/
-		=(8-0.6-(-8))/(0.832m)	[0.5]	V
		= 18.509 kΩ	[0.5]	

EEEB2	273 - Quiz 1	•
SEME	STER 2, ACADEMIC	YEAR 2017/2018
Date:	24 October 2017	Time: 15 minutes

Name:		Dr JBO
Student ID Nu	mber:	Model answer
Section:	01 A/B	
Lecturer:	Dr. Ja	maludin Bin Omar

Refer to a <u>two-transistor BJT current source</u> shown in Figure 1. All transistors are matched. The circuit parameters are: $V^+ = 7.5$ V and $V^- = -7.5$ V. The transistor parameters are: V_{BE} (on) = 0.6 V, $V_A = 150$ V, and $\beta = 80$. Output resistance (R_O) of the two-transistor BJT current source is 200 k Ω .

DESIGN the two-transistor BJT current source shown in the **Figure 1** using all the parameters given above. **Show clearly all calculations** as marks are given according to this.

[10 marks]

;Small signal

$$\beta = g_m r_\pi$$
$$g_m = \frac{I_{CQ}}{V_T}$$
$$r_\pi = \frac{\beta V_T}{I_{CQ}}$$
$$r_o = \frac{V_A}{I_{CQ}}$$

$$V_T = 26 \,\mathrm{mV}$$

Figure 1

R _o I _o	$= r_{02}$	$= V_A / I_O$ $= V_A / R_O$	[2] [1]
		= (150) / (200k)	[0.5]
		= 0.75 mA	[0.5]
I _{REF}		$=I_0\left(1+2/\beta\right)$	[2]
		= (0.75m)(1 + 2/80)	[0.5]
		= 0.76875 mA	[0.5]
R_1		$= (V^+ - V_{BE} - V^-) / I_{REF}$	[2]
		= (7.5 - 0.6 - (-7.5)) / (0.76875m)	[0.5]
		$= 18.7317 \text{ k}\Omega$	[0.5]

EEEB2	273 - Quiz 1	:
SEME	STER 2, ACADEMIC	YEAR 2017/2018
Date:	24 October 2017	Time: 15 minutes

Name:		Dr JBO
Student ID Nu	mber:	Model answer
Section:	01 A/B	5
Lecturer:	Dr. Ja	maludin Bin Omar

Refer to a <u>two-transistor BJT current source</u> shown in Figure 1. All transistors are matched. The circuit parameters are: $V^+ = 8$ V and $V^- = -8$ V. The transistor parameters are: V_{BE} (on) = 0.6 V, $V_A = 160$ V, and $\beta = 80$.

Output resistance (R_0) of the two-transistor BJT current source is 200 k Ω .

DESIGN the two-transistor BJT current source shown in the **Figure 1** using all the parameters given above. **Show clearly all calculations** as marks are given according to this.

[10 marks]

$$i_{C} = I_{S} e^{v_{BE}/V_{T}}; \text{npn}$$
$$i_{C} = I_{S} e^{v_{EB}/V_{T}}; \text{pnp}$$
$$i_{C} = \beta i_{B} = \frac{\beta}{1+\beta} i_{E}$$
$$i_{E} = i_{B} + i_{C}$$

;Small signal

$$V_T = 26 \text{ mV}$$

Figure 1

R_{O}	$= r_{02}$	$= V_A / I_O$	[2]
Io		$= V_A / R_O$	[1]
		= (160) / (200k)	[0.5]
		= 0.80 mA	[0.5]
I _{REF}		$=I_0\left(1+2/\beta\right)$	[2]
		$= (0.80 \mathrm{m})(1 + 2/80)$	[0.5]
		= 0.82 mA	[0.5]
R_1		$= (V^+ - V_{BE} - V^-) / I_{REF}$	[2]
		= (8 - 0.6 - (-8)) / (0.82 m)	[0.5]
		= 18.78 kΩ	[0.5]