Name:Dr JBOStudent ID Number:Model AnswerSection: 01 A/BLecturer:Dr. Jamaludin Bin Omar

Question:

Refer to ideal inverting op-amp in Figure 1. Calculate its absolute minimum and maximum values of the closed-loop voltage gain ($A_v = v_O/v_I$) when $R_1 = 30 \text{ k}\Omega$, potentiometer $R_{1V} = 0$ to 30 k Ω , and $R_2 = 25 \text{ k}\Omega$.

Show your calculation clearly.

[10 marks]

Figure 1

Answer:

$$A_d = v_0 / v_I = -R_2 / (R_1 + R_{1V})$$
 [1]

$R_1(\min) = R_1 + R_{1V}(\min) = 30 \text{ k}\Omega$	[1]
$R_1(\max) = R_1 + R_{1V}(\max) = 30 \ k\Omega + 30 \ k\Omega = 60 \ k\Omega$	[1]
$R_2 = 25 \text{ k}\Omega$	[1]

<u>Absolute value</u> of A_v is maximum when $R_{1V} = 0$.	
$\overline{A_{\nu}(\max)} = -R_2/R_1(\min) $	[2]
$\Rightarrow A_{\nu}(\max) = -25k/30k = 0.6 \text{ V/V}$	[1]

<u>Absolute value</u> of A_{ν} is minimum when $R_{1\nu} = 30 \text{ k}\Omega$.	
$\overline{A_{\nu}(\min)} = -R_2 /R_1(\max) $	[2]
$\Rightarrow A_{\nu}(\min) = = -25k/60k = 0.4167 \text{ V/V}$	[1]

Name:Dr JBOStudent ID Number:Model AnswerSection:01 A/BLecturer:Dr. Jamaludin Bin Omar

Question:

Refer to ideal inverting op-amp in Figure 1. Calculate its absolute minimum and maximum values of the closed-loop voltage gain ($A_v = v_O/v_I$) when $R_1 = 40 \text{ k}\Omega$, potentiometer $R_{1V} = 0$ to 30 k Ω , and $R_2 = 45 \text{ k}\Omega$.

Show your calculation clearly.

[10 marks]

Figure 1

Answer:

$$A_d = v_0 / v_I = -R_2 / (R_1 + R_{1V})$$
 [1]

$R_1(\min) = R_1 + R_{1V}(\min) = 40 \text{ k}\Omega$	[1]
$R_1(\max) = R_1 + R_{1V}(\max) = 40 \ \text{k}\Omega + 30 \ \text{k}\Omega = 70 \ \text{k}\Omega$	[1]
$R_2 = 45 \text{ k}\Omega$	[1]

<u>Absolute value</u> of A_{ν} is maximum when $R_{1\nu}$ is minimum. $A_{\nu}(\max) = |-R_2 / R_1(\min)|$ [2] $\Rightarrow A_{\nu}(\max) = |-45k/40k| = 1.125 \text{ V/V}$ [1]

<u>Absolute value</u> of A_v is minimum when $R_{1V} = 30 \text{ k}\Omega$.	
$\overline{A_{\nu}(\min)} = -R_2 /R_1(\max) $	[2]
$\Rightarrow A_{\nu}(\min) = = -45k/70k = 0.6428 \text{ V/V}$	[1]

Name:Dr JBOStudent ID Number:Model AnswerSection: 01 A/BLecturer:Dr. Jamaludin Bin Omar

Question:

Refer to ideal inverting op-amp in Figure 1. Calculate its absolute minimum and maximum values of the closed-loop voltage gain ($A_v = v_O/v_I$) when $R_1 = 20 \text{ k}\Omega$, potentiometer $R_{1V} = 0$ to 40 k Ω , and $R_2 = 75 \text{ k}\Omega$.

Show your calculation clearly.

[10 marks]

Figure 1

Answer:

$$A_d = v_0 / v_I = -R_2 / (R_1 + R_{1V})$$
 [1]

$R_1(\min) = R_1 + R_{1V}(\min) = 20 \text{ k}\Omega$	[1]
$R_1(\max) = R_1 + R_{1V}(\max) = 20 \ k\Omega + 40 \ k\Omega = 60 \ k\Omega$	[1]
$R_2 = 75 \text{ k}\Omega$	[1]

Absolute valueof A_v is maximum when R_{1V} is minimum. $A_v(\max) = |-R_2 / R_1(\min)|$ [2] $\Rightarrow A_v(\max) = |-75k/20k| = 3.75 V/V$ [1]

<u>Absolute value</u> of A_v is minimum when $R_{1V} = 30 \text{ k}\Omega$.	
$\overline{A_{\nu}(\min)} = -R_2 /R_1(\max) $	[2]
$\Rightarrow A_{\nu}(\min) = = -75k/60k = 1.25 \text{ V/V}$	[1]

Name:Dr JBOStudent ID Number:Model AnswerSection:01 A/BLecturer:Dr. Jamaludin Bin Omar

Question:

Refer to ideal inverting op-amp in Figure 1. Calculate its absolute minimum and maximum values of the closed-loop voltage gain ($A_v = v_O/v_I$) when $R_1 = 25 \text{ k}\Omega$, potentiometer $R_{1V} = 0$ to 35 k Ω , and $R_2 = 80 \text{ k}\Omega$.

Show your calculation clearly.

[10 marks]

Figure 1

Answer:

$$A_d = v_0 / v_I = -R_2 / (R_1 + R_{1V})$$
 [1]

$R_1(\min) = R_1 + R_{1V}(\min) = 25 \text{ k}\Omega$	[1]
$R_1(\max) = R_1 + R_{1V}(\max) = 25 \text{ k}\Omega + 35 \text{ k}\Omega = 60 \text{ k}\Omega$	[1]
$R_2 = 80 \mathrm{k}\Omega$	[1]

Absolute valueof A_{ν} is maximum when $R_{1\nu}$ is minimum. $A_{\nu}(\max) = |-R_2 / R_1(\min)|$ [2] $\Rightarrow A_{\nu}(\max) = |-80k/25k| = 3.2 \text{ V/V}$ [1]

<u>Absolute value</u> of A_{ν} is minimum when $R_{1\nu} = 30 \text{ k}\Omega$.	
$\overline{A_{\nu}(\min)} = -R_2 /R_1(\max) $	[2]
$\Rightarrow A_{\nu}(\min) = = -80k/60k = 1.333 \text{ V/V}$	[1]