Name:

Student ID Number:

Section Number: 01/02/03/04 A/B

Lecturer: Dr Jamaludin/Dr Azni Wati/Dr

Jehana Ermy/Prof Md Zaini

Table Number:

The National Energy University

College of Engineering Department of Electronics and Communication Engineering

Test 1

SEMESTER 2, ACADEMIC YEAR 2017/2018

Subject Code	:	EEEB273
Course Title	:	Electronics Analysis & Design II
Date	:	18 November 2017
Time Allowed	:	2 hours

Instructions to the candidates:

- 1. Write your Name and Student ID Number. Indicate your Section Number and Lecturerøs Name. Write also your Table Number.
- 2. Write all your answers using pen. DO NOT USE PENCIL except for the diagram.
- 3. ANSWER ALL QUESTIONS. Show clearly all your calculations. Every value must be written with its correct Unit.
- 4. WRITE YOUR ANSWER ON THIS QUESTION PAPER.

NOTE: DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO.

Question Number	Q1(a)	Q1(b)	Q2	Q3(a)	Q3(b)	Q4	Total
Marks							

QUESTION 1 [35 marks]

(a) (i) Draw the *npn* BJT Wilson and Cascode current sources with clear details of the transistors *Q_n* placements. [10 marks]
(ii) Clearly explain and compare the current sources in part a(i) in terms of their output current (*I₀*) stability. [5 marks]
(b) (i) Figure 1 shows a BJT three-transistor current source. Derive the expression of *I₀* in terms of *I_{REF}*, β and β₃. [10 marks]

(ii) For $V^+ = 10$ V and $V^- = 0$ V, design the circuit such that $I_0 = 0.7$ mA. The transistors parameters are: $\beta = \beta_3 = 80$, $V_{BE}(\text{on}) = 0.7$ V and $V_A = \infty$. [10 marks]

Answers for Question 1

Figure 1

Answers for Question 1 (Continued)

QUESTION 2 [20 marks]

The circuit in **Figure 2** has the following parameters:

$$V^+ = 1.8 \text{ V} \text{ and } V^- = -1.8 \text{ V}.$$

$$V_{TN} = 0.5 \text{ V}, k'_n = 80 \ \mu\text{A/V}^2$$
, and $\lambda = 0$.

Design the circuit such that $I_0 = 0.15$ mA, $I_{REF} = 0.5$ mA and transistor M_2 remains biased in the saturation region for $V_{DS2} \ge 1$ V. [20 marks]

Answers for Question 2

Figure 2

Answers for Question 2 (Continued)

QUESTION 3 [25 marks]

- (a) The differential amplifier in Figure 3 is biased with a three-transistor current source as shown. The transistor parameters are: $\beta = 40$, $V_{BE}(on) = 0.6$ V, and $V_{A4} = V_{A5} = \infty$. Determine R_1 if $V_{CE4} = 1.8$ V. [20 marks]
- (b) Redesign the differential amplifier circuit of Figure 3 if a Widlar current source is used as biasing circuit <u>instead</u>. Draw the complete differential amplifier circuit. [5 marks]

Answers for Question 3

Figure 3

Answers for Question 3 (Continued)

QUESTION 4 [20 marks]

Figure 4 has the transistor parameters of $\beta = 120$, $V_{BE}(\text{on}) = 0.7$ V, $V_A = \infty$ for Q_1 and Q_2 , and $V_A = 100$ V for Q_3 and Q_4 . Given that $I_Q = 4$ mA.

(a) **Determine** the differential-mode input resistance (\mathbf{R}_{id}) of the differential amplifier.

[6 marks]

- (b) **Determine** the differential-mode voltage gain (A_d) of the differential amplifier. Output is one-sided taken at collector of Q_2 . [6 marks]
- (c) **Determine** the output of the differential amplifier (v_0) if the inputs are $v_1 = 1.25 \sin \omega t \text{ mV}$ and $v_2 = 0.9 \sin \omega t \text{ mV}$. Given that $A_{cm} = -0.09912$. [8 marks]

Answers for Question 4

+10 V

Figure 4

Answers for Question 4 (Continued)

BASIC FORMULA FOR TRANSISTOR

 \underline{BJT} $i_{C} = I_{S}e^{v_{BE}/V_{T}}; \text{npn}$ $i_{C} = I_{S}e^{v_{EB}/V_{T}}; \text{pnp}$ $i_{C} = \alpha i_{E} = \beta i_{B}$ $i_{E} = i_{B} + i_{C}$ $\alpha = \frac{\beta}{\beta + 1}$

;Small signal $\beta = g_m r_\pi$ $g_m = \frac{I_{CQ}}{V_T}$ $r_\pi = \frac{\beta V_T}{I_{CQ}}$ $r_o = \frac{V_A}{I_{CQ}}$ $V_T = 26 \text{ mV}$

MOSFET

- ; N MOSFET $v_{DS}(\text{sat}) = v_{GS} - V_{TN}$ $i_D = K_n [v_{GS} - V_{TN}]^2$ $K_n = \frac{k'_n}{2} \cdot \frac{W}{L}$
- ; P MOSFET $v_{SD}(\text{sat}) = v_{SG} + V_{TP}$ $i_D = K_p [v_{SG} + V_{TP}]^2$ $K_p = \frac{k'_p}{2} \cdot \frac{W}{L}$

;Small signal

$$g_m = 2\sqrt{K_n I_{DQ}}$$
; N - MOSFET
 $g_m = 2\sqrt{K_p I_{DQ}}$; P - MOSFET
 $r_o \cong \frac{1}{\lambda I_{DO}}$

Quadratic formula:

$$Ax^{2} + Bx + C = 0 \quad \rightarrow \quad x = \frac{-B \pm \sqrt{B^{2} - 4AC}}{2A}$$