Name:

Student ID Number:

Section Number: 01/02/03/04 A/B

Lecturer: Dr Jamaludin/ Dr Azni Wati/ Dr

Jehana Ermy/ Prof Md Zaini

Table Number:

College of Engineering

Department of Electronics and Communication Engineering

Test 2

SEMESTER 2, ACADEMIC YEAR 2017/2018

Subject Code	•	EEEB273
Course Title	•	Electronics Analysis & Design II
Date	•	30 December 2017
Time Allowed	•	2 hours

Instructions to the candidates:

- 1. Write your Name and Student ID Number. Indicate your Section Number and Lecturer's Name. Write also your Table Number.
- 2. Write all your answers using pen. DO NOT USE PENCIL except for the diagram.
- 3. **ANSWER ALL QUESTIONS. Show clearly** all your calculations. Every value **must** be written with its correct Unit.
- 4. WRITE ALL YOUR ANSWERS ON THIS QUESTION PAPER.

NOTE: DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO.

Question Number	Q1a	Q1b-c	Q2a-d	Q2e	Q3	Q4a	Q4b	Total
Marks								

QUESTION 1 [20 marks]

A BJT differential amplifier shown in Figure 1 is biased by a constant current source with $I_Q = 0.23 \text{ mA}$. The differential amplifier is to be redesigned with an active load. The active load to be used is a BJT Wilson current source using *pnp* transistors.

The transistor parameters are $\beta = 120$, $V_{BE}(on) = V_{EB}(on) = 0.7 \text{ V}$, $V_{AN} = 100 \text{ V}$, and $V_{AP} = 120 \text{ V}$.

(a) **Draw** the new differential amplifier circuit added with the active load. **Label** the circuit correctly and clearly with appropriate symbols and numbering for transistors used in circuit.

[4 marks]

- (b) **Calculate** the differential-mode voltage gain, (A_d) , of the new circuit. [12 marks]
- (c) Calculate the differential-mode voltage gain, (A_d) , of the differential amplifier circuit if the active load is changed to a three-transistor current source. Give your comment about values of A_d for the differential amplifier circuit using Wilson current source and three-transistor current source active loads. [4 marks]

Figure 1

Answers for Question 1 (continued)

QUESTION 2 [35 marks]

Figure 2 shows a differential amplifier circuit with active loads and biased by a current source using MOSFET. Transistors M_1 and M_2 are driven into saturation with $V_{DS}(\text{sat})=1.12$ V. The active load transistors (M_3 and M_4) are matched with parameters $K_p = 0.1 \text{ mA/V}^2$, $V_{TP} = -2$ V, and $\lambda_p = 0.02 \text{ V}^{-1}$. Transistors M_5 , M_6 and M_7 are identical. All the NMOS transistors have the same $K_n = 0.2 \text{ mA/V}^2$, $V_{TN} = 2$ V, and $\lambda_n = 0.015 \text{ V}^{-1}$.

- (a) **Determine** I_1, I_2 , and I_{D1} when $v_1 = v_2 = 0$ V. [6 marks]
- (b) **Determine** the **one-sided differential mode voltage gain** (A_d) for the differential amplifier if $R_L = 100 \text{ k}\Omega$. [9 marks]
- (c) It is required that the CMRR of the circuit to be 60 dB. What is the common mode voltage gain (A_{cm})? [3 marks]
- (d) Suggest 2 ways to improve the CMRR for the circuit in the Figure 2. [2 marks]
- (e) The MOSFET differential amplifier with active load in the Figure 2 is replaced with the MOSFET differential amplifier with Cascode active load. Draw and label clearly all the transistors used in the new circuit. [15 marks]

Extra page for Answers – Indicate question number(s)

Extra page for Answers – Indicate question number(s)

QUESTION 3 [20 marks]

Consider the circuit shown in Figure 3. Study the Figure 1 thoroughly. With supply voltage ±10V and circuit parameters $R_1 = 19.3 \text{ k}\Omega$, $R_2 = R_3 = 0.1 \text{ k}\Omega$, and $R_4 = 5 \text{ k}\Omega$ it can be calculated that the value of I_Q is 0.307 mA.

Assume the quiescent values $I_{C7} = I_Q$; $I_{C1} = I_{E1} = I_{C2} = I_{E2}$; $V_{BE}(on) = 0.7$ V, $\beta = 120$, Early voltage is 100 for Q_7 and Q_{11} ; and $v_0 = 0$ when $v_1 = v_2 = 0$.

 R_i is the input resistance of the Darlington Pair while R_{L7} is the effective resistance connected between collector of Q_7 and signal ground. Calculate the small signal voltage gain of the Darlington Pair $(A_{\nu 2})$ by using the following relationship: [20 marks]

$$A_{v2} = \frac{V_{o3}}{V_{b6}} = \frac{\beta (1 + \beta) (r_{o7} \parallel R_{L7})}{R_i}$$

Figure 3

Answers for Question 3 (Continued)

QUESTION 4 [25 marks]

- (a) **Draw** a **class-A output stage** constructed using **npn** emitter follower with load R_L and biased by a three-transistor current sinking current source. The overall circuit is connected to supply voltages of $V^+ = +5$ V and V = -5 V. [5 marks]
- (b) A class-AB output stage with BJTs is shown in Figure 4. Reverse saturation current for every transistor is $I_S = 2 \times 10^{-15}$ A. Assume $+V_{CC} = +6$ V and $-V_{CC} = -6$ V. Let $R_L = 1$ k Ω and $V_{BB} = 1.40$ V. For the case of the output voltage $v_0 = -4$ V:
 - (i) Determine *i_L*, *i_{Cp}*, *i_{Cn}*, and *v_I*. [12 marks]
 (ii) Calculate the power dissipated in transistor *Q_n* and *Q_p*. [8 marks]

Figure 4

Answers for Question 4 (Continued)

APPENDIX

A) BASIC FORMULA FOR TRANSISTOR

BJTMOSFET
$$i_c = I_s e^{v_{BE}/V_T}$$
; NPN; N-MOSFET $i_c = I_s e^{v_{EB}/V_T}$; PNP $v_{DS}(\text{sat}) = v_{GS} - V_{TN}$ $i_c = \beta i_B = \frac{\beta}{\beta + 1} i_E$ $i_D = K_n [v_{GS} - V_{TN}]^2$ $i_E = i_B + i_C$ $K_n = \frac{\mu_n C_{ox} W}{2L} = \frac{k_n'}{2} \cdot \frac{W}{L}$;Small signal $v_{SD}(\text{sat}) = v_{SG} + V_{TP}$ $\beta = g_m r_{\pi}$ $i_D = K_p [v_{SG} + V_{TP}]^2$ $g_m = \frac{I_{CQ}}{V_T}$ $K_p = \frac{\mu_p C_{ox} W}{2L} = \frac{k_p'}{2} \cdot \frac{W}{L}$ $r_n = \frac{\beta V_T}{I_{CQ}}$ $g_m = 2\sqrt{K_n I_{DQ}}$; N-MOSFET $v_r = 26 \text{ mV}$ $r_o \cong \frac{1}{\lambda I_{DQ}}$

B) <u>HYBRID-π EQUIVALENT CIRCUITS</u>

$$Ax^{2} + Bx + C = 0 \qquad \rightarrow \quad x = \frac{-B \pm \sqrt{B^{2} - 4AC}}{2A}$$