

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION

SEMESTER 1 2018 / 2019

PROGRAMME	: Bachelor of Electrical & Electronics Engineering (Honours) Bachelor of Electrical Power Engineering (Honours)
SUBJECT CODE	: EEEB273
SUBJECT	: ELECTRONIC ANALYSIS AND DESIGN II
DATE	: September 2018
DURATION	: 3 hours

INSTRUCTIONS TO CANDIDATES:

- 1. This paper contains **FIVE** (5) questions in **NINE** (9) pages.
- 2. Answer **ALL** questions.
- 3. Write **all** answers in the answer booklet provided. **Use pen** to write your answer.
- 4. Write answer to different question on **a new page**.

THIS QUESTION PAPER CONSISTS OF NINE (9) PRINTED PAGES INCLUDING THIS COVER PAGE.

Question 1 [20 marks]

You are one of the selected candidates to attend an interview carried out at Motorola Semiconductor as Product Engineer. As part of the interview you are given the following task:

Design a BJT Current Source that utilized 4 transistors arranged in cascode mode. All transistors in the circuit are matched. The transistor parameters are: $\beta = 150$, $V_A = 100$ V, and $V_{BE}(on) = 0.7$ V. The power supplies: $V^+ = 5$ V, V = -5V. Resistor $R_1 = 6$ k Ω .

Determine the followings:

(a)	Draw the circuit for the current source.	[4 marks]
(b)	Derive the relationship between I_O and I_{REF} .	[5 marks]
(c)	Based on given value of β , use approximate value of I_0 to estim	ate the output resistance,
	R_O , of the current source.	[7 marks]
(d)	Find g_{m4} and $r_{\pi 4}$.	[4 marks]

Question 2 [20 marks]

- (a) The differential amplifier in Figure 1 has transistor parameters as $\beta = 100$ and $V_{BE}(\text{on}) = 0.7 \text{ V}$. The Early voltage is $V_A = \infty$ for Q_1 and Q_2 , and is $V_A = 50 \text{ V}$ for Q_3 and Q_4 .
 - (i) Design the circuit such that $I_3 = 400 \ \mu A$ and $V_{CE1} = V_{CE2} = 10 \ V$. [5 marks]
 - (ii) Determine A_d and $CMRR_{dB}$ for a one-sided output at v_{O2} . A_{cm} is given as -0.113 V/V. [5 marks]

Figure 1

(b) The differential amplifier in Figure 2 is biased at $I_Q = 0.5$ mA. The transistor parameters are shown in Table 1.

N-MOSFET transistor	P-MOSFET transistor
$K_n = 0.25 \text{ mA}/V^2$	$K_p = 0.25 \text{ mA}/V^2$
$V_{TN} = 0.4 \text{ V}$	$V_{TP} = -0.4 \text{ V}$
$\lambda_n = 0.02 \text{ V}^{-1}$	$\lambda_p = 0.02 \ \mathrm{V}^{-1}$

Table 1: MOSFET parameters

- (i) Draw an improved diff-amp for the circuit in Figure 2. Use Table 1 for the transistors specification. [4 marks]
- (ii) Calculate the minimum power supply voltages if the common input voltages are to be in the range of ± 3 V. Assume symmetrical supply voltages. [6 marks]

Figure 2

Question 3 [20 marks]

A simple bipolar op-amp is designed as shown in **Figure 3**. Note that biasing for amplifiers in the circuit is provided by two-transistor current mirrors. Study the **Figure 3** carefully. Neglect base currents. Assume parameters for all transistors are $V_{BE}(\mathbf{on}) = 0.7 \text{ V}$, $\beta = 200$, and $V_A = \infty$.

- (a) Referring to Figure 3 calculate DC values for I_1, I_0, I_{C2}, v_{02} , and v_{03} . [10 marks]
- (b) With small-signal analysis, values for A_{d1} , $r_{\pi 3}$, and $A_{\nu 2}$ can be found using the following Equations (3.1) to (3.3), assuming that $R_{i3} >> R_5$. Calculate A_{d1} , $A_{\nu 2}$, and the total overall small-signal voltage gain, A_d for the bipolar op-amp. [10 marks]

$$A_{d1} = \frac{V_{o2}}{v_d} = \frac{g_{m2}}{2} \left(R_C || R_{i2} \right)$$
(3.1)

$$r_{\pi 3} \cong \beta r_{\pi 4} \tag{3.2}$$

$$A_{\nu 2} \cong \frac{I_{R4}}{2V_T} (R_5) \tag{3.3}$$

Figure 3

Question 4 [20 marks]

- (a) Figure 4a and Figure 4b show two different designs of output stages.
 - (i) **Identify** class of the output stages in the **Figure 4a** and **Figure 4b**. [2 marks]
 - (ii) For the output stage circuit in the **Figure 4a** assume the B-E cut-in voltage (i.e. V_{BE} V_{EB}) of **0.6** V such that v_0 remains zero for the interval -**0.6** V $\leq v_I \leq$ **0.6** V. Sketch the voltage transfer characteristic of the circuit. Indicate when Q_n is conducting and when it is not conducting. [3 marks]
 - (iii) For the output stage circuit in the **Figure 4b**, the circuit parameters are $V_{CC} = 12$ V, $R_L = 100 \Omega$, and $V_{BB} = 1.2$ V. Q_n and Q_p are matched with $I_S = 4 \times 10^{-13}$ A and $\beta >> 1$. For input voltage $v_I = 0$, calculate the quiescent collector currents, i_{Cn} and i_{Cp} . What is the maximum amplitude of the output voltage (v_O) and the corresponding maximum power that can be delivered to the load? [5 marks]

Figure 4a

Figure 4b

(b) The **741 op-amp** is shown in Figure 5. Assume that $V_{BE}(\mathbf{on}) = V_{EB}(\mathbf{on}) = 0.7 \text{ V}$, $\beta_n = 200$, $\beta_p = 60$, $V_{AN} = 200 \text{ V}$, and $V_{AP} = 100 \text{ V}$. The area of transistor Q_{13B} is 75% of transistor Q_{12} . It is given that $I_{REF} = I_{C12} = 0.3 \text{ mA}$. Calculate the small signal input resistance of the Gain stage (i.e. into the base of Q_{16}). [10 marks]

Figure 5

Question 5 [20 marks]

- (a) Using feedback resistor of 20 k Ω , draw the following circuits using inverting op-amp configuration:
 - (i) An inverting amplifier with a closed-loop gain of -10. [3 marks]
 - (ii) A voltage follower. [5 marks]
- (b) A general output equation for a **difference amplifier** shown in **Figure 6** is:

$$v_o = A_d v_d + A_{cm} v_{cm}$$

For the difference amplifier in the **Figure 6**, the circuit parameters are $R_1 = 20 \text{ k}\Omega$, $R_2 = 80 \text{ k}\Omega$, $R_3 = 20 \text{ k}\Omega$, and $R_4 = 85 \text{ k}\Omega$ and the output voltage (v_0) equation is as follows:

$$v_o = \left[1 + \frac{R_2}{R_1}\right] \left[\frac{R_4/R_3}{1 + R_4/R_3}\right] v_{I2} - \frac{R_2}{R_1} v_{I1}$$

where $v_{I1} = v_{cm} + \frac{v_d}{2}$ and $v_{I2} = v_{cm} - \frac{v_d}{2}$

Calculate the differential-mode gain (A_d) , common-mode gain (A_{cm}) , and the commonmode rejection ratio (*CMRR*) in dB for the circuit. [12 marks]

Figure 6

-END OF QUESTION PAPER-

APPENDIX:

A) BASIC FORMULA FOR TRANSISTOR

BJT

$$i_{C} = I_{S} e^{v_{BE}/V_{T}}$$
; NPN
 $i_{C} = I_{S} e^{v_{EB}/V_{T}}$; PNP
 $i_{C} = \beta i_{B} = \frac{\beta}{\beta + 1} i_{E}$
 $i_{E} = i_{B} + i_{C}$

;Small signal

$$\beta = g_m r_\pi$$
$$g_m = \frac{I_{CQ}}{V_T}$$
$$r_\pi = \frac{\beta V_T}{I_{CQ}}$$
$$r_o = \frac{V_A}{I_{CQ}}$$
$$V_T = 26 \text{ mV}$$

MOSFET

; N – MOSFET

$$v_{DS}(\text{sat}) = v_{GS} - V_{TN}$$

 $i_D = K_n [v_{GS} - V_{TN}]^2$
 $K_n = \frac{\mu_n C_{ox} W}{2L} = \frac{k'_n}{2} \cdot \frac{W}{L}$
; P – MOSFET
 $v_{SD}(\text{sat}) = v_{SG} + V_{TP}$
 $i_D = K_p [v_{SG} + V_{TP}]^2$
 $K_p = \frac{\mu_p C_{ox} W}{2L} = \frac{k'_p}{2} \cdot \frac{W}{L}$
; Small signal
 $g_m = 2\sqrt{K_n I_{DQ}}$; N – MOSFET
 $g_m = 2\sqrt{K_p I_{DQ}}$; P – MOSFET
 $r_o \cong \frac{1}{\lambda I_{DQ}}$

D o

+

 V_{ds}

-0

 I_d

B) <u>HYBRID-π EQUIVALENT CIRCUITS</u>

$$Ax^{2} + Bx + C = 0 \longrightarrow x = \frac{-B \pm \sqrt{B^{2} - 4AC}}{2A}$$