Name: **Dr JBO**

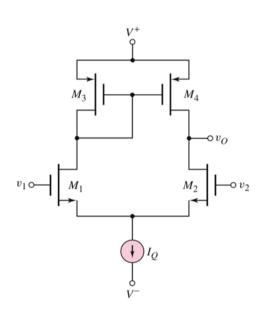
Student ID Number: Model Answer

Section: 01 A/B

Lecturer: Dr. Jamaludin Bin Omar

EEEB273 - Quiz 3

SEMESTER 1, ACADEMIC YEAR 2018/2019


Date: 19 July 2018 Time: 15 minutes

Question:

The circuit parameters for differential amplifier with active load shown in **Figure 1** are $V^+ = 5$ V, $V^- = -5$ V, and $I_Q = 220$ μ A. The NMOS transistor parameters are $V_{TN} = 0.4$ V, $k'_n = 100$ μ A/V², $(W/L)_n = 8$, and $\lambda_n = 0.018$ V⁻¹. The PMOS transistor parameters are $V_{TP} = -0.4$ V, $k'_p = 40$ μ A/V², $(W/L)_p = 10$, and $\lambda_p = 0.02$ V⁻¹.

- a) **Determine** the output resistance (R_0) of the differential amplifier. [4 marks]
- b) Calculate the differential-mode voltage gain (A_d) and the common-mode voltage gain (A_{cm}) if CMRR of the differential amplifier is 55 dB. [6 marks]
- c) **Draw** a differential amplifier with active load that has a higher differential-mode voltage gain compared to the differential amplifier shown in the **Figure 1**. [2 marks]

Answer:

; N – M OSFET

$$v_{DS}(\text{sat}) = v_{GS} - V_{TN}$$

$$i_D = K_n [v_{GS} - V_{TN}]^2$$

$$K_n = \frac{k_n'}{2} \cdot \frac{W}{L}$$

; P - MOSFET

$$v_{SD}(\text{sat}) = v_{SG} + V_{TP}$$

$$i_D = K_p [v_{SG} + V_{TP}]^2$$

$$K_p = \frac{k_p}{2} \cdot \frac{W}{I}$$

;Small signal

(a)
$$I_D = I_Q/2 = 220 \mu/2 = 110 \mu A$$
 [1] $r_{o2} = 1/(\lambda_v I_D) = 1/[(0.018)(110\mu)] = 505.05 k\Omega$ [1]

$$r_{o4} = 1/(\lambda_p I_D) = 1/[(0.02)(110\mu)] = 454.54 \text{ k}\Omega$$
 [1]

$$R_o = r_{o2} \parallel r_{o4} = 505.05 \text{k} \parallel 454.54 \text{k} = 239.23 \text{ k}\Omega$$

(b)
$$R_o = r_{o2} \| r_{o4} = 239.23 \text{ k}\Omega$$
 $g_m = 2\sqrt{K_2 I_{DQ}}$ $g_m = 2\sqrt{K_2 I_{DQ}}$

$$A_d = g_{m2}R_o = (0.4195 \text{m})(239.23 \text{k}) = 0.4195 \text{m}/\text{V}^2 \qquad [1] \\ = 100.35 \qquad [1] \qquad r_o \cong \frac{1}{\lambda I_{DO}}$$

$$CMRR_{dB}$$
 = 20 log $[A_d/A_{cm}]$ = 55 dB [1]
 A_{cm} = $A_d/[10^{55/20}]$ = 0.17845 [1]

Name: Dr JBO

Student ID Number: Model Answer

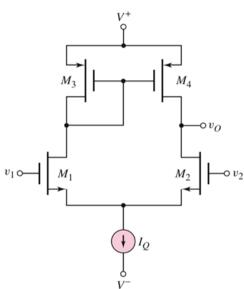
Section: 01 A/B

Lecturer: Dr. Jamaludin Bin Omar

EEEB273 - Quiz 3

SEMESTER 1, ACADEMIC YEAR 2018/2019

Date: 19 July 2018 Time: 15 minutes


Ouestion:

The circuit parameters for differential amplifier with active load shown in **Figure 1** are $V^{+} = 5 \text{ V}$, V = -5 V, and $I_0 = 230$ μ A. The NMOS transistor parameters are $V_{TN} = 0.4$ V, $k'_n = 100$ μ A/V², $(W/L)_n = 8$, and $\tilde{\lambda}_n = 0.02 \text{ V}^{-1}$. The PMOS transistor parameters are $V_{TP} = -0.4 \text{ V}$, $k'_p = 40 \text{ } \mu\text{A/V}^2$, $(W/L)_p = 10$, and $\lambda_p = 0.018 \text{ V}^{-1}$.

- **Determine** the output resistance (R_0) of the differential amplifier. [4 marks]
- Calculate the differential-mode voltage gain (A_d) and the common-mode voltage gain (A_{cm}) b) if *CMRR* of the differential amplifier is 45 dB. [4 marks]
- Draw a differential amplifier with active load that has a higher differential-mode voltage c) gain compared to the differential amplifier shown in the **Figure 1**. [2 marks]

Answer:

(a)

; N - MOSFET

$$v_{DS}$$
 (sat) = $v_{GS} - V_{TN}$
 $i_D = K_n [v_{GS} - V_{TN}]^2$
 $K_n = \frac{k_n'}{2} \cdot \frac{W}{L}$
: P - MOSFET

 $v_{SD}(\text{sat}) = v_{SC} + V_{TD}$

 $i_D = K_p [v_{SG} + V_{TP}]^2$

$$= 115 \,\mu\text{A} \qquad \qquad [1] \qquad K_p = \frac{k_p'}{2} \cdot \frac{W}{L}$$

$$I_D = I_Q/2 = 230 \mu/2$$
 = 115 μ A [1]
 $r_{o2} = 1/(\lambda_n I_D) = 1/[(0.02)(115 \mu)] = 434.78 k\Omega$ [1]

$$r_{o4} = 1 / (\lambda_p I_D) = 1 / [(0.018)(115\mu)] = 483.09 \text{ k}\Omega$$
 [1]

$$r_{o4} = 1 / (\lambda_p I_D) = 1 / [(0.018)(115\mu)] = 483.09 \text{ k}2$$
 [1]
 $R_o = r_{o2} || r_{o4} = 434.78 \text{k} || 483.09 \text{k} = 228.83 \text{ k}\Omega$ [1]

(b)
$$R_o = r_{o2} \| r_{o4} = 228.83 \text{ k}\Omega$$

 $g_{m2} = 2\sqrt{[K_n I_D]} = 2\sqrt{[(k'_n/2)(W/L)_n(I_Q/2)]}$
 $= 2\sqrt{[(100\mu/2)(8)(115\mu)]} = 0.4289 \text{ mA/V}^2$

$$g_m = 2\sqrt{K_? I_{DQ}}$$

$$A_d = g_{m2} R_o = (0.4289 \text{m})(228.83 \text{k}) = 98.145$$
 [1]

$$CMRR_{dB}$$
 = 20 log $[A_d/A_{cm}]$ = 45 dB [1]
 A_{cm} = $A_d/[10^{45/20}]$ = 0.5519 [1]

Name: Dr JBO

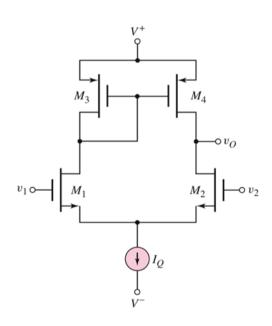
Student ID Number: Model Answer

Section: 01 A/B

Lecturer: Dr. Jamaludin Bin Omar

EEEB273 - Quiz 3

SEMESTER 1, ACADEMIC YEAR 2018/2019


Date: 19 July 2018 Time: 15 minutes

Ouestion:

The circuit parameters for differential amplifier with active load shown in **Figure 1** are $V^{+} = 5 \text{ V}$, V = -5 V, and $I_0 = 240$ μ A. The NMOS transistor parameters are $V_{TN} = 0.4$ V, $k'_n = 100$ μ A/V², $(W/L)_n = 5$, and $\tilde{\lambda}_n = 0.018 \text{ V}^{-1}$. The PMOS transistor parameters are $V_{TP} = -0.4 \text{ V}$, $k'_p = 40 \text{ }\mu\text{A/V}^2$, $(W/L)_p = 10$, and $\lambda_p = 0.02 \text{ V}^{-1}$.

- **Determine** the output resistance (R_0) of the differential amplifier. [4 marks]
- Calculate the differential-mode voltage gain (A_d) and the common-mode voltage gain (A_{cm}) b) if *CMRR* of the differential amplifier is **55 dB**. [4 marks]
- Draw a differential amplifier with active load that has a higher differential-mode voltage c) gain compared to the differential amplifier shown in the **Figure 1**. [2 marks]

Answer:

; N - M OSFET

$$v_{DS}(\text{sat}) = v_{GS} - V_{TN}$$

$$i_D = K_n [v_{GS} - V_{TN}]^2$$

$$K_n = \frac{k_n}{2} \cdot \frac{W}{L}$$

; P - MOSFET

$$v_{SD}(\text{sat}) = v_{SG} + V_{TP}$$

 $i_D = K_p [v_{SG} + V_{TP}]^2$
 $K_p = \frac{k_p}{2} \cdot \frac{W}{I}$

- (a) $=I_0/2=240\mu/2$ $= 120 \mu A$ [1]
 - $= 1 / (\lambda_n I_D)$ $= 1 / [(0.018)(120\mu)] = 462.96 \text{ k}\Omega$ [1]
 - $= 1 / (\lambda_p I_D)$ $= 1 / [(0.02)(120\mu)] = 416.67 \text{ k}\Omega$ [1]
 - $= 462.96 k \parallel 416.67 k = 219.29 k \Omega$ $= r_{o2} || r_{o4}$
- ;Small signal [1] $g_m = 2\sqrt{K_2 I_{DO}}$

- **(b)** R_{o} $= r_{o2} || r_{o4}$ $= 219.29 \text{ k}\Omega$ $= 2 \sqrt{[(k'_n/2)(W/L)_n(I_0/2)]}$ $=2\sqrt{[K_nI_D]}$ g_{m2} [1] [1]
 - $=2\sqrt{(100\mu/2)(5)(120\mu)}$ $= 0.3464 \text{ mA/V}^2$
 - $= g_{m2} R_o = (0.3464 \text{m})(219.29 \text{k})$ = 75.96 A_d
 - $= 20 \log \left[\frac{A_d}{A_{cm}} \right] = 55 \text{ dB}$ $CMRR_{dB}$ [1] $=A_d/[10^{55/20}]=0.13507$ [2] A_{cm}
- A drawing using cascode or Wilson active load (c) [2]

Name: **Dr JBO**

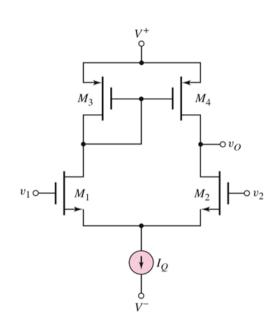
Student ID Number: Model Answer

Section: 01 A/B

Lecturer: Dr. Jamaludin Bin Omar

EEEB273 - Quiz 3

SEMESTER 1, ACADEMIC YEAR 2018/2019


Date: 19 July 2018 Time: 15 minutes

Question:

The circuit parameters for differential amplifier with active load shown in **Figure 1** are $V^+ = 5$ V, $V^- = -5$ V, and $I_Q = 260$ μ A. The NMOS transistor parameters are $V_{TN} = 0.4$ V, $k'_n = 100$ μ A/V², $(W/L)_n = 5$, and $\lambda_n = 0.02$ V⁻¹. The PMOS transistor parameters are $V_{TP} = -0.4$ V, $k'_p = 40$ μ A/V², $(W/L)_p = 10$, and $\lambda_p = 0.018$ V⁻¹.

- a) **Determine** the output resistance (R_0) of the differential amplifier. [4 marks]
- b) Calculate the differential-mode voltage gain (A_d) and the common-mode voltage gain (A_{cm}) if CMRR of the differential amplifier is 65 dB. [4 marks]
- c) **Draw** a differential amplifier with active load that has a higher differential-mode voltage gain compared to the differential amplifier shown in the **Figure 1**. [2 marks]

Answer:

; N – MOSFET

$$v_{DS}(\text{sat}) = v_{GS} - V_{TN}$$

$$i_D = K_n [v_{GS} - V_{TN}]^2$$

$$K_n = \frac{k_n}{2} \cdot \frac{W}{L}$$

; P - MOSFET

$$v_{SD}(\text{sat}) = v_{SG} + V_{TP}$$

 $i_D = K_p [v_{SG} + V_{TP}]^2$
 $K_p = \frac{k_p}{2} \cdot \frac{W}{I}$

(a)
$$I_D = I_Q/2 = 260 \mu/2$$
 = 130 μ A [1]

$$r_{o2} = 1/(\lambda_n I_D) = 1/[(0.02)(130\mu)] = 384.61 \text{ k}\Omega$$
 [1]

$$r_{o4} = 1/(\lambda_p I_D) = 1/[(0.018)(130\mu)] = 427.35 \text{ k}\Omega$$
 [1]

$$R_o = r_{o2} \| r_{o4} = 384.61 k \| 427.35 k = 202.43 k\Omega$$

[1] ;Small signal
$$g_m = 2\sqrt{K_2 I_{DO}}$$

(b)
$$R_o = r_{o2} \| r_{o4} = 202.43 \text{ k}\Omega$$

 $g_{m2} = 2\sqrt{[K_n I_D]} = 2\sqrt{[(k'_n/2)(W/L)_n(I_Q/2)]}$
 $= 2\sqrt{[(100\mu/2)(5)(130\mu)]} = 0.3605 \text{ mA/V}^2$
 $A_d = g_{m2} R_o = (0.3605 \text{m})(202.43 \text{k}) = 72.97$

$$\int_{\mathbf{r}} \mathbf{r} \approx 1$$

$$CMRR_{dB}$$
 = 20 log $[A_d/A_{cm}]$ = 65 dB
 A_{cm} = $A_d/[10^{65/20}]$ = 0.04103

$$r_o \cong \frac{1}{\lambda I_{DQ}}$$

[1]

[1]