Name:

Student ID Number:

Section Number: 01/02/03/04 A/B

Lecturer: Dr Jamaludin/Dr Fazrena Azlee/

Dr Jehana Ermy/Prof Md Zaini

Table Number:

The National Energy University

College of Engineering

Department of Electronics and Communication Engineering

Test 1 – Model Answers

SEMESTER 1, ACADEMIC YEAR 2018/2019

Subject Code	•	EEEB273
Course Title	:	Electronics Analysis & Design II
Date	•	7 July 2018
Time Allowed	•	2 hours

Instructions to the candidates:

- 1. Write your Name and Student ID Number. Indicate your Section Number and Lecturer's Name. Write also your Table Number.
- 2. Write all your answers using pen. DO NOT USE PENCIL except for the diagram.
- 3. **ANSWER ALL QUESTIONS. Show clearly** all your calculations. Every value **must** be written with its correct Unit.
- 4. WRITE YOUR ANSWER ON THIS QUESTION PAPER.

NOTE: DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO.

🕑 GOOD LUCK! 🔘

Question	Q1	Q1	Q2	Q2	Q3	Q3	Q4	Q4	Total
Number	(a)	(b)	(a)	(b)	(a)	(b)	(a-c)	(d)	
Marks									

QUESTION 1[35 marks]

Answers for Question 1

Answers for Question 1(a)

(i)	Better approximation of I_O to I_{REF} for circuit using same transistors	[2]
(ii)	Higher output resistance by a factor of $\beta/2$	[2]
(iii)	Higher output resistance by a factor of 2	[2]
(iv)	Higher output resistance by a factor of $(1 + g_m R'_E)$	[2]
	Using smaller resistors in the circuit	[2]
	Can have different values for I_O and I_{REF} where I_O is smaller than I_{REF}	_F [2]
	For (iv) \rightarrow Can use any two answers above, total 4 marks.	

Answers for Question 1(b)

(i)

$I_{B1} = I_{B2}$		[1.5]
$I_O = I_{C2} = \beta I_{B2}$	$I_{B2} = I_O / \beta$	[1.5]
$I_{C1} = I_{C2} \qquad I_{C1} = I_O$		[1.5]
$I_{E3} = 2 I_{B2} + V_{BE} / R_2$		[1.5]
$I_{B3} = I_{E3} / (1 + \beta)$		[1.5]
$= (2 I_{B2})/(1 + \beta) + (V_{BE})/(1 + \beta)$	$(1+\beta) (R_2)$	

$$= (2 I_0) / (\beta (1 + \beta)) + (V_{BE}) / ((1 + \beta)R_2)$$

$$I_{REF} = I_{C1} + I_{B3}$$
[1.5]

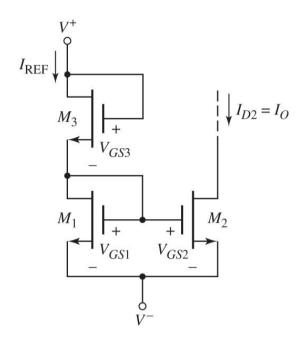
$$I_{REF} = I_{C1} + I_{B3}$$
[1
= $I_O + (2 I_O) / (\beta (1 + \beta)) + (V_{BE}) / ((1 + \beta)R_2)$ [1
 $I_{REF} - (V_{BE}) / ((1 + \beta)R_2) = I_O + (2 I_O) / (\beta (1 + \beta))$ [1

$$= I_{O} + (2 I_{O})/(\beta(1+\beta)) + (V_{BE})/((1+\beta)R_{2})$$
[1.5]
REF - $(V_{BE})/((1+\beta)R_{2}) = I_{O} + (2 I_{O})/(\beta (1+\beta))$ [1.5]

$$= I_{O} [1+2/(\beta (1+\beta)]]$$

$$I_{REF} - \frac{V_{BE}}{(1+\beta)R_2} = I_0 \left(1 + \frac{2}{\beta(1+\beta)} \right)$$
[1.5]

(ii)


$$I_{REF} = I_O (1 + 2/(\beta (1 + \beta))) + (V_{BE})/((1 + \beta)R_2)$$
[2]
= (0.70m)(1+2/(80x81)) + (0.7)/(81x10k)
= 0.700216m + 0.000864m = 0.7011 mA [1]

$$R_{I} = (V^{+} - 2V_{BE}(\text{on}) - 0) / I_{REF}$$
[2]
= (10 - 2(0.7)) / (0.7011m) [2]
= 12.27 kΩ [1]

QUESTION 2 [20 marks]

Answers for Question 2

Q2(a)

Placement of M_1 , M_2 and M_3	[5]
Currents I_{REF} and I_O	[3]

Power supplies V^+ and V^- [2]

Answers for Question 2 (Continued)

Q2(b) Using the equation,
$$V_{DS}(sat) = V_{GS} - V_{TN}$$

 $V_{DS2}(sat) = V_{GS2} - V_{TN}$

$$V_{GS2} = V_{DS2}(sat) + V_{TN}$$
 [2]

$$= 0.6 + 0.4 =$$
1.0 V [1]

From the RHS; solve for $(W/L)_2$ using the equation given.

$$\left(\frac{W}{L}\right)_{2} = \frac{I_{O}}{\left(\frac{k'_{n}}{2}\right)(V_{GS2} - V_{TN})^{2}}$$

$$= (50u)/(120u/2)[1-0.4]^{2}$$
[1]

Since
$$V_{GSI} = V_{GS2} = IV$$
 [1]

Solve for

$$\left(\frac{W}{L}\right)_{1} = \frac{I_{REF}}{\left(\frac{k'_{n}}{2}\right)(V_{GS1} - V_{TN})^{2}}$$
[1]

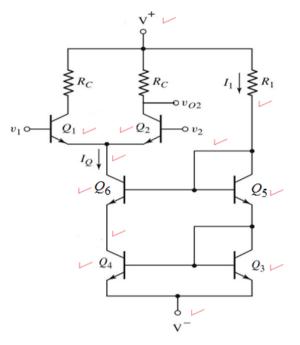
$$= (100u)/(120u/2)[1-0.4]^{2}$$

$$= 4.63 [0.5]$$

For the LHS; solve for V_{GS3} .

$$V_{GS3} = V^+ - V_{GSI} - V^-$$
[1]
= 2.5 - 1 = 1.5 V [0.5]

Solve for


$$\binom{W}{L}_{3} = \frac{I_{REF}}{(\frac{k'_{n}}{2})(V_{GS3} - V_{TN})^{2}}$$

$$= (100u)/(120u/2)[1.5 - 0.4]^{2}$$

$$= \underline{1.377}$$
[0.5]

QUESTION 3 [25 marks]

Answers for Question 3(a)

Marking:	
Correct differential amplifier with Rc and inputs	[1]
E1/E2 to C6 (or C4) connection (IQ)	[1]
V+ and V-	[1]
Correct cascode current source connection	[1]
Correct $Iref/I_1$ side with diode connected transistors	[1]

Answers for Question 3(b)

(b)

$$V_{CE4} = V^{+} - I_{C4}R_{C} - V_{E}$$

$$I_{C4} = \frac{V^{+} - V_{CE4} - V_{E}}{R_{C}}$$
[2]

$$I_{C4} = \frac{10 - (1.8) - (-0.7)}{10k} = 0.89 \ mA$$
[2]

$$I_{E4} = \frac{1 + \beta}{\beta}I_{C4}$$
[2]

$$I_{E4} = \left(\frac{41}{40}\right)(0.89\ m) = 0.91225 \ mA$$
[2]

$$I_{C2} = 2I_{E4}$$
[2]

$$I_{C2} = 2(0.91225\ m) = 1.8245 \ mA$$
[2]

$$I_{1} = \left(1 + \frac{2}{\beta(1+\beta)}\right)(I_{C2})$$
[2]

$$I_{1} = \left(1 + \frac{2}{(40)(41)}\right)(1.8245\ m) = 1.826725\ mA$$
[2]

$$R_{1} = \frac{V^{+} - 2V_{BE} - V^{-}}{I_{1}}$$
[2]

$$R_{1} = \frac{10 - 2(0.7) + 10}{1.826725\ m} = 10.182\ k\Omega$$
[2]

QUESTION 4 [20 marks]

Answers for Question 4

Q4(a) Calculate the value of resistor R_C .	[3 marks]	
VRC = V + - Vo2 = IC2Rc		[1]
$I_{C2} = \frac{I_Q}{2} = 200\mu/2 = 100\mu$		[1]
VRC = 10 - 5 = 5V		
So $Rc = 5/100u = 50k\Omega$		[1]

Q4(b) Find the differential voltage gain (A_d) and common-mode voltage gain (A_{cm}) for one-sided

output [10 marks]

$A_d = \frac{g_{m1}R_C}{2}$	[1]
$g_{m1} = \frac{I_{C1}}{V_T}$, $I_{C1} = I_{C2} = 100\mu$	[1]
$g_{m1} = \frac{100\mu}{26m} = 3.846 mA/V$	[1]
$A_d = \frac{(3.846m)(50k)}{2} = 96.15 V/V$	[1]

Version 1

Given $CMRR(dB) = 85dB = 20 Log CMRR$	[1]
Therefore $CMRR = 10^{(85/20)} = 17783$	[1]

CMRR = Ad/ Acm	[2]
So $ Acm = Ad/CMRR = 96.15 / 17783 = 5.407 \times 10^{-3}$	[2]

Version 2

$Acm = -\frac{gmRc}{1 + \frac{2(1+\beta)Ro}{rr + BR}}$	[2]
Ro = ro4(1+gm4(rpi4 R2))	[0.5]
$ro4 = VA4/IQ = 200/200u = 1M\Omega$	[0.5]
gm4 = IQ/VT = 200u/26m = 7.69mA/V	[0.5]
$rpi4 = \beta 4.VT/IQ = 500(26m)/200u = 65k\Omega$	[0.5]
$Ro = 15.23M\Omega$	[0.5]
$r_{\pi 1} = \frac{\beta_1 V_T}{I_{C1}} = \frac{(200)(0.026)}{100\mu} = 52 \ k\Omega$	[0.5]
(3.848m)(50k)	
$Acm = -\frac{(c11100)(c111)}{1 + \frac{2(1 + 200)15.23M}{52k}}$	
$= -1.634 \text{ x} 10^{-3}$	[1]

Q4(c) Determine the differential-mode input resistance R_{id} and the common-mode input resistance

<i>R_{icm}</i> [5 marks]	
$R_{id} = 2r_{\pi 1}$	[0.5]
$r_{\pi 1} = \frac{\beta_1 V_T}{I_{C1}} = \frac{(200)(0.026)}{100\mu} = 52 \ k\Omega$	[0.5]
So $R_{id} = 2(52k) = 104 k\Omega$	[0.5]
Ricm = $(1+B)[Ro]$ Ro = ro4 $(1+gm4(rpi4 R2))$ ro4 = VA4/IQ = 200/200u = 1M Ω gm4 = IQ/VT = 200u/26m = 7.69mA/V rpi4 = β 4.VT/IQ = 500(26m)/200u = 65kg Ro = 15.23M Ω Ricm = $(1+200)(15.23M)$ = 3.06 G Ω	

Q4(d) If the circuit is modified such that resistor R_2 is zero, will this improve the common mode rejection performance of the differential amplifier? Justify your answer. [2 marks]

If R2 is zero, the current source is now the simple 2 transistor current source, which has lower output resistance Ro than the Widlar current source. This will cause the value of common mode voltage gain Acm to increase, hence CMRR will decrease. Hence the performance will worsen.	[1/2] [1/2] [1/2] [1/2]
--	----------------------------------