Name:

Student ID Number:

Section Number: 01/02/03/04 A/B

Lecturer: Dr Jamaludin/Dr Fazrena Azlee/

Dr Jehana Ermy/Prof Md Zaini

Table Number:

The National Energy University

College of Engineering

Department of Electronics and Communication Engineering

Test 1

SEMESTER 1, ACADEMIC YEAR 2018/2019

Subject Code	•	EEEB273
Course Title	•	Electronics Analysis & Design II
Date	•	7 July 2018
Time Allowed	•	2 hours

Instructions to the candidates:

- 1. Write your Name and Student ID Number. Indicate your Section Number and Lecturer's Name. Write also your Table Number.
- 2. Write all your answers using pen. DO NOT USE PENCIL except for the diagram.
- 3. **ANSWER ALL QUESTIONS. Show clearly** all your calculations. Every value **must** be written with its correct Unit.
- 4. WRITE YOUR ANSWER ON THIS QUESTION PAPER.

NOTE: DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO.

🕑 GOOD LUCK! 🕲

Question	Q1	Q1	Q2	Q2	Q3	Q3	Q4	Q4	Total
Number	(a)	(b)	(a)	(b)	(a)	(b)	(a-c)	(d)	
Marks									

BASIC FORMULA FOR TRANSISTOR

<u>BJT</u>

$$i_{C} = I_{S} e^{v_{BE}/V_{T}}; \text{npn}$$
$$i_{C} = I_{S} e^{v_{EB}/V_{T}}; \text{pnp}$$
$$i_{C} = \alpha i_{E} = \beta i_{B}$$
$$i_{E} = i_{B} + i_{C}$$
$$\alpha = \frac{\beta}{\beta + 1}$$

;Small signal

 $\beta = g_m r_\pi$ $g_m = \frac{I_{CQ}}{V_T}$ $r_\pi = \frac{\beta V_T}{I_{CQ}}$ $r_o = \frac{V_A}{I_{CQ}}$ $V_T = 26 \text{ mV}$

MOSFET

; N – MOSFET

$$v_{DS}$$
 (sat) = $v_{GS} - V_{TN}$
 $i_D = K_n [v_{GS} - V_{TN}]^2$
 $K_n = \frac{k'_n}{2} \cdot \frac{W}{L}$

; P – MOSFET $v_{SD}(\text{sat}) = v_{SG} + V_{TP}$ $i_D = K_p [v_{SG} + V_{TP}]^2$ $K_p = \frac{k'_p}{2} \cdot \frac{W}{L}$

;Small signal

$$g_m = 2\sqrt{K_n I_{DQ}}$$
; N - MOSFET
 $g_m = 2\sqrt{K_p I_{DQ}}$; P - MOSFET
 $r_o \cong \frac{1}{\lambda I_{DQ}}$

Quadratic formula :

$$Ax^{2} + Bx + C = 0 \quad \rightarrow \quad x = \frac{-B \pm \sqrt{B^{2} - 4AC}}{2A}$$

This is extra page for answers. Please indicate question number clearly.

QUESTION 1[35 marks]

- (a) **List the advantage(s)** of:
 - (i) A basic **three-transistor** BJT current source as compared to a **two-transistor** BJT current source. [2 marks]
 - (ii) A Wilson BJT current source as compared to a basic three-transistor BJT current source. [2 marks]
 - (iii) A **cascode** BJT current source as compared to a **Wilson** BJT current source. [2 marks]
 - (iv) A Widlar current source as compared to a two-transistor BJT current source.
 - [4 marks]
- (b) Consider a modified three-transistor BJT current source as in Figure 1. Transistor parameters are $V_{BE}(on) = 0.7$ V, $V_A = \infty$, and $\beta = 80$. *Hint: Please take note of the current directions given in the* Figure 1.
 - (i) **Show** that

$$I_{REF} - \frac{V_{BE}}{(1+\beta)R_2} = I_O\left(1 + \frac{2}{\beta(1+\beta)}\right)$$
 [15 marks]

(ii) For
$$R_2 = 10 \text{ k}\Omega$$
, $V^+ = 10 \text{ V}$, and $I_0 = 0.70 \text{ mA}$, find I_{REF} and R_1 . [10 marks]

Answers for Question 1

Answers for Question 1 (Continued)

QUESTION 2 [20 marks]

For a **MOSFET** current source the bias voltages are $V^+ = 2.5$ V and $V^- = 0$ V. Transistors are available with the parameters: $k'_n = 120 \ \mu \text{A} / \text{V}^2$, $V_{TN} = 0.4$ V, and $\lambda = 0$.

- (a) **Draw and label** completely a NMOS current source, M_1 and M_2 , with M_3 acting as a physical resistor. [10 marks]
- (b) **Design** the circuit such that $I_{REF} = 100 \ \mu\text{A}$, $I_O = 50 \ \mu\text{A}$, and $V_{DS2}(\text{sat}) = 0.6 \ \text{V}$.

[10 marks]

Answers for Question 2

Answers for Question 2 (Continued)

QUESTION 3 [25 marks]

(a) **Draw** a complete circuit diagram for an **NPN** differential amplifier with resistive load biased by a **cascode** current source. Transistors Q_1 and Q_2 are used in the differential amplifier while transistors Q_3 until Q_6 are used in the **cascode** current source. **Label the diagram clearly**, showing all necessary currents, resistors, and **NPN** BJTs used in the circuit.

[5 marks]

Answers for Question 3(a)

(b) The differential amplifier in Figure 2 is biased with a three-transistor current source as shown. The transistor parameters are: $\beta = 40$, $V_{BE}(on) = 0.7$ V, and $V_{A4} = V_{A5} = \infty$. Determine R_1 if $V_{CE4} = 1.8$ V. [20 marks]

Answers for Question 3(b)

Figure 2

QUESTION 4 [20 marks]

Consider a **BJT differential amplifier** biased with a **Widlar** current source, as shown in **Figure 3**. The transistor parameters are $\beta_1 = 200$ for Q_1 and Q_2 , and $\beta_3 = 500$ for Q_3 and Q_4 . $V_{A1} = \infty$ for Q_1 and Q_2 , and $V_{A3} = 200$ V for Q_3 and Q_4 .

From analysis, it is determined that $I_Q = 200 \ \mu\text{A}$, $v_{O2} = 5 \ \text{V}$, and $CMRR(dB) = 85 \ dB$.

Given
$$R_2 = 2 \text{ k}\Omega$$
.

- (a) **Calculate** the value of resistor R_C .
- (b) Find the differential voltage gain (A_d) and common-mode voltage gain (A_{cm}) for one-sided output.
 [10 marks]
- (c) **Determine** the differential-mode input resistance (\mathbf{R}_{id}) and the common-mode input resistance (\mathbf{R}_{icm}) . [5 marks]
- (d) If the circuit is modified such that resistor R_2 is zero, will this improve the common mode rejection performance of the differential amplifier? Justify your answer. [2 marks]

Answers for Question 4

[3 marks]

Answers for Question 4 (Continued)

This is extra page for answers. Please indicate question number clearly.