Name:

Student ID Number:

Section Number: 01/02/03/04 A/B

Lecturer: Dr Jamaludin/ Dr Fazrena Azlee/

Dr Jehana Ermy/ Prof Md Zaini

Table Number:

The National Energy University

College of Engineering

Department of Electronics and Communication Engineering

Test 2 – Model Answers

SEMESTER 1, ACADEMIC YEAR 2018/2019

Subject Code	•	EEEB273
Course Title	:	Electronics Analysis & Design II
Date	•	11 August 2018
Duration	•	2 hours

Instructions to the candidates:

- 1. Write your **Name** and **Student ID Number**. Indicate your **Section Number** and **Lecturer**'s Name. Write also your **Table Number**.
- 2. Write all your answers using pen. DO NOT USE PENCIL except for the diagram.
- 3. **ANSWER ALL QUESTIONS. Show clearly** all your calculations. Every value **must** be written with its correct Unit.

4. WRITE YOUR ANSWER ON THIS QUESTION PAPER.

NOTE: DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO.

Question Number	Q1a	Q1bc	Q2a	Q2b	Q3a	Q3b	Q4a	Q4b	Total
Marks									

QUESTION 1[20 marks]

Answers for Question 1 (Continued)

Q1(a)

3 marks: correct label 3 marks: correct placement

Q1(b)	$r_{02} = V_A / I_{CQ2} = V_A / (I_Q / 2) = 100 / (0.15m / 2) = 1.33 M\Omega$	[2]
	$r_{04} = V_A/I_{CQ2} = V_A/(I_Q/2) = 100/(0.15m/2) = 1.33M\Omega$	[2]
	$g_{m2} = I_{CQ2}/V_T = I_Q/2V_T = 0.15m/[2(26m)] = 2.885mA/V$	[2]
	$A_d = g_{m2} (r_{02} / / r_{04}) = 2.885 m (1.33 M / / 1.33 M) = 1923 V / V$	[2]

Q1(c)
$$A_d = g_{m2} (r_{02} // r_{04} // R_L)$$
 [2]
524 = 2.885m (1.33M // 1.33M // R_L) [2]

$$RL = 250k\Omega$$
 [2]

QUESTION 2 [35 marks]

Answers for Question 2 (Continued)

Q2(a) Placements of M_1 and M_2 [5] Current source M_3 and M_4 [5] Correct label for MOSFET and power supplies [5]

1]
1]
1]
1]
1]
2]
21
2) 1]
1]
2, 2, 1]
2]
2]
1]

QUESTION 3 [20 marks]

Answers for Question 3

Q3(a) Derive formula $I_0 = I_0 / \beta$ and use it	5 marks]
$I_{B3} + I_{B4} = I_{C3} / \beta + \tilde{I_{C4}} / \beta = (I_{C3} + I_{C4}) / \beta$	[1]
Assuming base currents for transistors in the diff-amp and I_O	are small, then
$I_{C3} + I_{C4} \approx I_{C1} + I_{C2} \approx I_{E1} + I_{E2} = I_Q$	[1]
Then $I_{B3} + I_{B4} = I_Q / \beta$	[1]
For the DC currents in the diff-amp to be balanced	
$I_O = I_{B6} = I_{B3} + I_{B4} = I_Q / \beta$	[1]
$I_0 = I_Q / \beta = 0.307 \text{ mA} / 120 = 0.002558 \text{ mA} = 2.558$	μΑ [1]
Q3(b) Calculation for $A_{\nu 2}$:	15 marks]
$I_O = 0.307 \text{ mA}, \qquad I_{B6} = I_O = 2.558 \mu\text{A}$	
$\tilde{I_{C6}} = \beta I_{B6} = 120 \times 2.558 \mu = 0.307 \ mA$	[1]
$I_{C7} = \beta I_{B7} = \beta I_{E6} = \beta (1+\beta) I_{B6}$	[1]
$I_{C7} = 120(121)(2.558\mu) = 37.142 \ mA$	[0.5]
$I_{C8} = \frac{v_0 - V^-}{R_2} = \frac{0 - (-10)}{5k} = 2 \ mA$	[1]
Calculation for R_i :	
$r_{\pi 6} = \frac{\beta V_T}{I_{C6}} = \frac{120 \times 0.026}{0.307m} = 10.16 \ k\Omega$	[1]
RV_{π} 120×0.026	

$$r_{\pi 7} = \frac{\beta V_T}{I_{C7}} = \frac{120 \times 0.026}{37.142m} = 0.084 \ k\Omega$$
 [1]

$$R_i = r_{\pi 6} + (1 + \beta) r_{\pi 7}$$
[1]

$$R_i = 10.16k + (121)(0.084k) = 20.32 k\Omega$$
 [0.5]

Calculation for R_{c11} :

$$r_{o11} = V_A / I_{C7} = 100/37.142 \text{m} = 2.692 \text{ k}\Omega$$
 [1]

Therefore,
$$R_{c11} = r_{o11} = 2.692 \text{ k}\Omega$$

Calculation for R_{b8} :

$$r_{\pi 8} = \beta V_T / I_{C8} = (120 \text{ x } 0.026) / (2\text{m}) = 1.56 \text{ k}\Omega$$
 [1]

$$R_{b8} = r_{\pi 8} + (1+\beta)R_2 = 1.56k + (121)(5k) = 606.56 k\Omega$$
 [1, 0.5]

$$R_{L7} = R_{c11} \| R_{b8} = 2.692 \,\mathrm{k} \| 606.56 \,\mathrm{k} = 2.68 \,\mathrm{k}\Omega$$
^[1]

$$r_{o7} = r_{o11} = V_A / I_{C7} = 100/37.142 \text{m} = 2.692 \text{ k}\Omega$$
 [1]

$$r_{o7} \parallel R_{L7} = 2.692 \text{k} \parallel 2.68 \text{k} = 1.343 \text{ k}\Omega$$

$$A_{\nu 2} = \frac{\beta(1+\beta)(r_{o7}||R_{L7})}{R_i}$$

 $A_{\nu 2} = [(120 \times 121)(2.692 \text{ k} || 2.68 \text{ k})] / 20.32 \text{ k} = 959.66$ [1]

[1, 0.5]

QUESTION 4 [25 marks]

Answers for Question 4 (Continued)

Answers to Question 4(a) [5 marks]

Output	Output current waveform	Explanation
Stage		
Class A	$\begin{bmatrix} i_C \\ I_{CQ} \\ 0 \\ \pi \\ 2\pi \\ 3\pi \\ 4\pi \\ \omega t$	output transistor is biased at a quiescent current I_Q [¹ /2 mark] and conducts for the entire cycle of the input signal. [¹ /2 mark]
Class B	$\begin{bmatrix} i_C \\ 0 \\ \pi \\ 2\pi \\ 3\pi \\ 4\pi \\ \omega t \end{bmatrix}$	output transistor conducts for only one-half of each sine-wave input cycle. [¹ /2 mark]
Class AB	i_C I_{CQ} $\frac{1}{0}$ π 2π 3π 4π ωt [1 mark]	output transistor biased at a small quiescent current I_Q , [½ mark] and conducts for slightly more than half a cycle [½ mark]

This is extra page for answers. Please indicate question number clearly.

Answers to QUESTION 4(b) [20 marks]

(i)	VO(max) = Vcc - VCE1(sat) = 10 - 0.3 = 9.7V	[2]
	VO(min) = -Vcc + VCE2(sat) = -10 + 0.3 = -9.7V	[2]
	IQ = IL(Min) = VO(min) / RL = -9.7 / 1k = 9.7 mA	[2]
	IR = IQ = 9.7mA	[1]
	R = (Vbias = VBE(on) Vcc)/IR	[2]
	= (2-0.65-(-10)) / 9.7m = 1.17kΩ	[1]
(ii)	$\eta = PL(ave) / Ps(ave) \times 100\%$	[1]
	$PL(ave) = \frac{1}{2} Vo(max)^2 / RL$ = $\frac{1}{2} (9.7)^2 / 1k = 47.045 \text{ mW}$	[2]
	PS(ave) = (Vcc - (-Vcc))xIQ + (Vbias - (-Vcc))xIR = (1010)(9.7m) + (210)(9.7m) = 310.4mW	[2] [1]
	η = 47.045m / 310.4m x 100% = 15.16%	[1]
(iii)	PQ1 = VCE1xIC1 = (Vcc-Vo) x (IQ+IL)	[2]

 $^{= (10-5) \}times (9.7m + 5/1k) = (5)(14.7m) = 73.5mW$ [1]