Name:

Student ID Number:

Section Number: 01/02/03/04 A/B

Lecturer: Dr Jamaludin/ Dr Fazrena Azlee/

Dr Jehana Ermy/ Prof Md Zaini

Table Number:

The National Energy University

College of Engineering

Department of Electronics and Communication Engineering

Test 2

SEMESTER 1, ACADEMIC YEAR 2018/2019

Subject Code	•	EEEB273
Course Title	:	Electronics Analysis & Design II
Date	•	11 August 2018
Duration	•	2 hours

Instructions to the candidates:

- 1. Write your **Name** and **Student ID Number**. Indicate your **Section Number** and **Lecturer**'s Name. Write also your **Table Number**.
- 2. Write all your answers using pen. DO NOT USE PENCIL except for the diagram.
- 3. **ANSWER ALL QUESTIONS. Show clearly** all your calculations. Every value **must** be written with its correct Unit.

4. WRITE YOUR ANSWER ON THIS QUESTION PAPER.

NOTE: DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO.

Question Number	Q1a	Q1bc	Q2a	Q2b	Q3a	Q3b	Q4a	Q4b	Total
Marks									

BASIC FORMULA FOR TRANSISTOR

<u>BJT</u>

$$i_{C} = I_{S} e^{v_{BE}/V_{T}}; \text{npn}$$
$$i_{C} = I_{S} e^{v_{EB}/V_{T}}; \text{pnp}$$
$$i_{C} = \alpha i_{E} = \beta i_{B}$$
$$i_{E} = i_{B} + i_{C}$$
$$\alpha = \frac{\beta}{\beta + 1}$$

;Small signal

 $\beta = g_m r_\pi$ $g_m = \frac{I_{CQ}}{V_T}$ $r_\pi = \frac{\beta V_T}{I_{CQ}}$ $r_o = \frac{V_A}{I_{CQ}}$ $V_T = 26 \text{ mV}$

MOSFET

; N – MOSFET

$$v_{DS}$$
 (sat) = $v_{GS} - V_{TN}$
 $i_D = K_n [v_{GS} - V_{TN}]^2$
 $K_n = \frac{k'_n}{2} \cdot \frac{W}{L}$

; P – MOSFET $v_{SD}(\text{sat}) = v_{SG} + V_{TP}$ $i_D = K_p [v_{SG} + V_{TP}]^2$ $K_p = \frac{k'_p}{2} \cdot \frac{W}{L}$

;Small signal

$$g_m = 2\sqrt{K_n I_{DQ}}$$
; N - MOSFET
 $g_m = 2\sqrt{K_p I_{DQ}}$; P - MOSFET
 $r_o \cong \frac{1}{\lambda I_{DQ}}$

Quadratic formula :

$$Ax^{2} + Bx + C = 0 \quad \rightarrow \quad x = \frac{-B \pm \sqrt{B^{2} - 4AC}}{2A}$$

This is extra page for answers. Please indicate question number clearly.

QUESTION 1 [20 marks]

The differential amplifier with active load shown in Figure 1 has a pair of pnp bipolar differential amplifier as input devices and a pair of npn bipolar connected as an active load. The circuit bias is $I_Q = 0.15$ mA, and the transistor parameters are $\beta = 100$, and $V_A = 100$ V.

- (a) **Draw** the active load circuit to complete the circuit in **Figure 1**. [6 marks]
- (b) Find the open-circuit differential-mode voltage gain, A_d . [8 marks]
- (c) **Calculate** the value of a load resistance R_L connected to the output v_0 if the differential mode voltage gain A_d is to be reduced to 524 V/V. [6 marks]

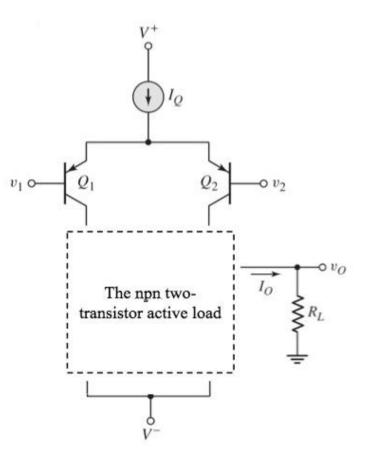


Figure 1

Answers for Question 1 (Continued)

QUESTION 2 [35 marks]

(a) **Draw** a **PMOS** differential amplifier, M_1 and M_2 , with an active load of two-transistor current source, M_3 and M_4 . Label them clearly with $V^+ = 10$ V and $V^- = -10$ V.

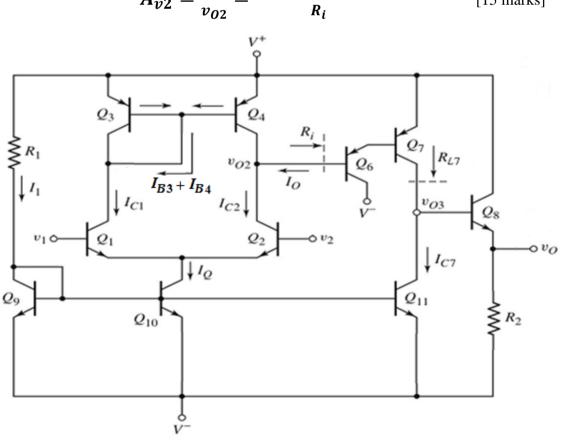
[15 marks]

- (b) Consider the drawn figure in **part** (a). The transistors parameters are $V_{TN} = 1$ V, $K_n = 90$ $\mu A/V^2$, $\lambda_n = 0.02$ V⁻¹, $V_{TP} = -1$ V, $K_p = 60$ A/V², $\lambda_p = 0.01$ V⁻¹, and $I_Q = 0.4$ mA. Assume that the differential amplifier transistors M_1 and M_2 , and active load transistors M_3 and M_4 are identical.
 - (i) **Calculate** the output resistance, R_0 , of the differential amplifier. [5 marks]
 - (ii) **Determine** the differential-mode gain, A_d . [5 marks]
 - (iii) Find the output voltage, v_0 , if the differential input voltage is $v_d = 20 \sin(\omega t) V$.

[5 marks]

(iv) What will happen to the differential amplifier gain if the active load is changed to cascode current source? [5 marks]

Answers for Question 2 (Continued)

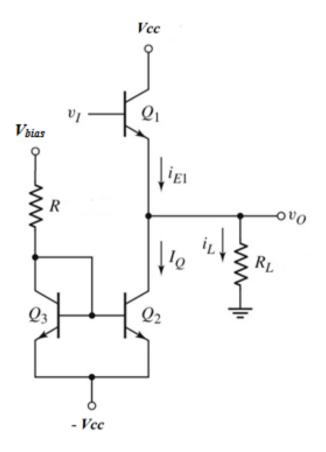

QUESTION 3 [20 marks]

Consider a multistage amplifier shown in Figure 2. Take note that one PNP two-transistor current source is used as active load for a differential amplifier. Two other NPN two-transistor current sources are used to bias the differential amplifier and a Darlington Pair respectively. Given values of $V^+ = 10$ V, $V^- = -10$ V, $I_Q = 0.307$ mA, and $R_2 = 5$ k Ω . Assume $\beta = 120$ for all transistors; Early voltage (V_A) for Q_7 and Q_{11} is 100 V; saturation current (I_S) for Q_7 and Q_{11} is higher than other transistors; $I_{C7} = I_{C11}$; and output voltage $v_0 = 0$ when inputs $v_1 = v_2 = 0$.

 $I_0 = I_0 / \beta$ when the DC currents in the differential amplifier are (a) Show that **balanced** (i.e. $I_0 = I_{B3} + I_{B4}$) by assuming that base currents for transistors in the differential amplifier and I_O are small. Then **determine** the value of I_O in the Figure 2.

[5 marks]

In the Figure 2 also, R_i is the input resistance of the Darlington Pair and R_{L7} is the effective (b) resistance connected between collector of Q_7 and signal ground. Calculate the small signal voltage gain of the Darlington Pair $(A_{\nu 2})$ by using the following relationship



 $A_{\nu 2} = \frac{v_{03}}{v_{02}} = \frac{\beta(1+\beta)(r_{07}||R_{L7})}{R_i}$ [15 marks]

Figure 2

QUESTION 4 [25 marks]

- (a) Briefly **explain** the **classification** of the output stage of **Class-A**, **Class-B** and **Class-AB** by **sketching** the waveform of the relevant transistor current, i_c . [5 marks]
- (b) A Class-A output stage circuit using BJTs is shown in Figure 3. For the circuit, $V_{CC} = 10$ V, $V_{bias} = 2$ V, and $R_L = 1$ k Ω . Assume all the transistors are matched with $V_{BE}(on) = 0.65$ V, $V_{CE}(sat) = 0.3$ V, and $V_A = \infty$. Neglect the base currents.
 - (i) **Calculate** the value of I_Q to allow the largest possible output voltage swing. What is the value of resistor R? [10 marks]
 - (ii) **Calculate** the power conversion efficiency (η) of this circuit. [7 marks]
 - (iii) Calculate the power dissipation in the emitter follower transistor Q_1 when output voltage $V_0 = 5$ V. [3 marks]

Answers for Question 4 (Continued)

This is extra page for answers. Please indicate question number clearly.