Dr JBO Name:

Student ID Number: Model answer

Section:

Lecturer: Dr. Jamaludin Bin Omar

EEEB273/EEEB2014 - Quiz 1

SEMESTER 2, ACADEMIC YEAR 2018/2019

Date: 25 October 2018 Time: 15 minutes

Question:

Refer to **Figure 1**. All transistors are matched.


The circuit parameters are: $V^+ = 8 \text{ V}$ and $V^- = -8 \text{ V}$.

The transistor parameters are: $\beta = 50$, $V_{BE}(on) = 0.6$ V, and $V_A = 120$ V.

(a) **Design** a three-transistor current source using all the parameters given above so that $I_{B2} = 6 \mu A$.

[8 marks] [2 marks]

(b) Calculate the output resistance (R_0) of the three-transistor current source. Show clearly all calculations as marks are given according to this.

$$i_C = I_S e^{v_{BE}/V_T}$$
; npn
 $i_C = I_S e^{v_{EB}/V_T}$; pnp
 $i_C = \alpha i_E = \beta i_B$
 $i_E = i_B + i_C$
 $\alpha = \frac{\beta}{\beta + 1}$

Figure 1

Answer:

(a) Design		
$I_0 = I_{C2}$	$=\beta I_{B2}$	[1]
	$= (50) (6 \mu A)$	[0.5]
	= 0.3 mA	[0.5]

$$I_{REF}$$
 = $I_O [1 + 2/\beta(1 + \beta)]$ [2]
= $(0.3\text{m})[1 + 2/(50\text{x}51)]$ [0.5]
= 0.3002 mA [0.5]

$$R_1$$
 = $(V^+ - 2V_{BE} - V^-) / I_{REF}$ [2]
= $(8 - 2x0.6 - (-8)) / (0.3002 \text{ m})$ [0.5]
= $49.2946 \text{ k}\Omega$ [0.5]

(b) Calculate
$$R_O$$

 $R_O = r_{O2} = V_A / I_O$ [1]
 $= (120 \text{ V}) / (0.3 \text{ mA})$ [0.5]
 $= 400 \text{ k}\Omega$ [0.5]

;Small signal

$$\beta = g_m r_{\pi}$$

$$r_{\pi} = \frac{\beta V_T}{I_{CQ}}$$

$$g_m = \frac{I_{CQ}}{V_T}$$

$$r_o = \frac{V_A}{I_{CQ}}$$

$$V_T = 26 \text{ mV}$$

Name: **Dr JBO**

Student ID Number: Model answer

Section:

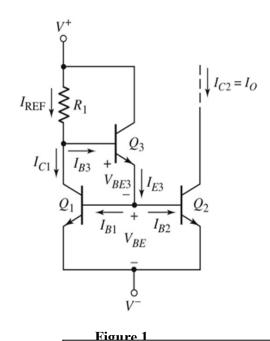
Lecturer: Dr. Jamaludin Bin Omar

EEEB273/EEEB2014 - Quiz 1

SEMESTER 2, ACADEMIC YEAR 2018/2019 Date: 25 October 2018 Time: 15 minutes

Question:

Refer to Figure 1. All transistors are matched.


The circuit parameters are: $V^+ = 8 \text{ V}$ and $V^- = -8 \text{ V}$.

The transistor parameters are: $\beta = 50$, $V_{BE}(on) = 0.6$ V, and $V_A = 160$ V.

(c) **Design** a three-transistor current source using all the parameters given above so that $I_{B2} = 7 \mu A$.

[8 marks] [2 marks]

(d) Calculate the **output resistance** (R_0) of the three-transistor current source. Show clearly all calculations as marks are given according to this.

$$i_C = I_S e^{v_{BE}/V_T}$$
; npn
 $i_C = I_S e^{v_{EB}/V_T}$; pnp
 $i_C = \alpha i_E = \beta i_B$
 $i_E = i_B + i_C$
 $\alpha = \frac{\beta}{\beta + 1}$

;Small signal

$$\beta = g_m r_{\pi}$$

$$r_{\pi} = \frac{\beta V_T}{I_{CQ}}$$

$$g_m = \frac{I_{CQ}}{V_T}$$

$$r_o = \frac{V_A}{I_{CQ}}$$

$$V_T = 26 \text{ mV}$$

Answer:

$$I_O = I_{C2} = \beta I_{B2}$$
 [1]
= (50) (7 μ A) [0.5]
= 0.35 mA [0.5]
$$I_{REF} = I_O [1 + 2/\beta(1 + \beta)]$$
 [2]
= (0.35m)[1 + 2/(50x51)] [0.5]
= 0.3502 mA [0.5]

$$R_1 = (V^+ - 2V_{BE} - V^-) / I_{REF}$$
 [2]
= $(8 - 2x0.6 - (-8)) / (0.3502 \text{ m})$ [0.5]

$$= 42.2615 \text{ k}\Omega$$
 [0.5]

(b) Calculate R_0

(a) Design

$$R_O = r_{O2} = V_A / I_O$$
 [1]
= (160 V) / (0.35 mA) [0.5]
= 457.14 k Ω [0.5]

Name: **Dr JBO**

Student ID Number: Model answer

Section:

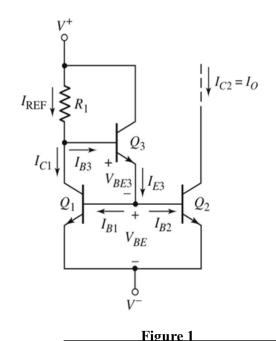
Lecturer: Dr. Jamaludin Bin Omar

EEEB273/EEEB2014 - Quiz 1 ; SEMESTER 2, ACADEMIC YEAR 2018/2019

Date: 25 October 2018 Time: 15 minutes

Question:

Refer to Figure 1. All transistors are matched.


The circuit parameters are: $V^+ = 7.5 \text{ V}$ and $V^- = -7.5 \text{ V}$.

The transistor parameters are: $\beta = 80$, $V_{BE}(on) = 0.6$ V, and $V_A = 150$ V.

(e) **Design** a three-transistor current source using all the parameters given above so that $I_{B2} = 6 \mu A$.

[8 marks]

(f) Calculate the output resistance (R_0) of the three-transistor current source. [2 marks] Show clearly all calculations as marks are given according to this.

$$i_C = I_S e^{v_{BE}/V_T}$$
; npn
 $i_C = I_S e^{v_{EB}/V_T}$; pnp
 $i_C = \alpha i_E = \beta i_B$
 $i_E = i_B + i_C$
 $\alpha = \frac{\beta}{\beta + 1}$

;Small signal

$$\beta = g_m r_{\pi}$$
$$r = \frac{\beta V_T}{\gamma}$$

$$r_{\pi} = \frac{\beta V_T}{I_{CQ}}$$

$$g_{m} = \frac{I_{CQ}}{V_{T}}$$

$$r_o = \frac{V_A}{I_{CQ}}$$

$$V_T = 26 \text{ mV}$$

Answer:

(a) Design
$$I_O = I_{C2} = \beta I_{B2}$$
 [1] $= (80) (6 \mu A)$ [0.5] $= 0.48 \text{ mA}$ [0.5]

$$I_{REF}$$
 = $I_O [1 + 2/\beta(1 + \beta)]$ [2]
= $(0.48 \text{m})[1 + 2/(80 \text{x} 81)]$ [0.5]
= 0.4801 mA [0.5]

$$R_1$$
 = $(V^+ - 2V_{BE} - V^-) / I_{REF}$ [2]
= $(7.5 - 2x0.6 - (-7.5)) / (0.4801 \text{ m})$ [0.5]
= $28.744 \text{ k}\Omega$ [0.5]

(b) Calculate
$$R_0$$

$$R_O = r_{O2} = V_A / I_O$$
 [1]
= (150 V) / (0.48 mA) [0.5]
= 312.5 k Ω [0.5]

Name: **Dr JBO**

Student ID Number: Model answer

Section:

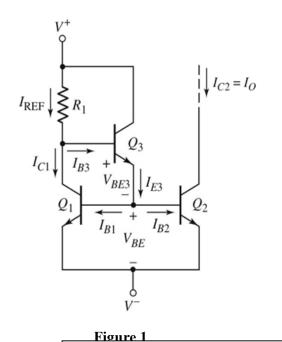
Lecturer: Dr. Jamaludin Bin Omar

EEEB273/EEEB2014 - Quiz 1

SEMESTER 2, ACADEMIC YEAR 2018/2019 Date: 25 October 2018 Time: 15 minutes

Question:

Refer to Figure 1. All transistors are matched.


The circuit parameters are: $V^+ = 7.5 \text{ V}$ and $V^- = -7.5 \text{ V}$.

The transistor parameters are: $\beta = 80$, $V_{BE}(on) = 0.6$ V, and $V_A = 160$ V.

(g) **Design** a three-transistor current source using all the parameters given above so that $I_{B2} = 7 \mu A$.

[8 marks] [2 marks]

(h) Calculate the output resistance (R_0) of the three-transistor current source. Show clearly all calculations as marks are given according to this.

$$i_C = I_S e^{v_{BE}/V_T}$$
; npn
 $i_C = I_S e^{v_{EB}/V_T}$; pnp
 $i_C = \alpha i_E = \beta i_B$
 $i_E = i_B + i_C$
 $\alpha = \frac{\beta}{\beta + 1}$

;Small signal

$$\beta = g_m r_{\pi}$$

$$r_{\pi} = \frac{\beta V_T}{I_{CQ}}$$

$$g_m = \frac{I_{CQ}}{V_T}$$

$$r_o = \frac{V_A}{I_{CQ}}$$

$$V_T = 26 \text{ mV}$$

Answer:

$$I_{O} = I_{C2} = \beta I_{B2}$$
 [1]
= (80) (7 μ A) [0.5]
= 0.56 mA [0.5]
 $I_{REF} = I_{O} [1 + 2/\beta(1 + \beta)]$ [2]
= (0.56m)[1 + 2/(80x81)] [0.5]
= 0.5601 mA [0.5]
 $R_{1} = (V^{+} - 2V_{BE} - V^{-}) / I_{REF}$ [2]

=
$$(7.5 - 2 \times 0.6 - (-7.5)) / (0.5601 \text{ m}) [0.5]$$

= $24.638 \text{ k}\Omega$ [0.5]

(b) Calculate
$$R_0$$

(a) Design

$$R_O = r_{O2} = V_A / I_O$$
 [1]
= (160 V) / (0.56 mA) [0.5]
= 285.714 k Ω [0.5]