EEEB273/EEEB2014 - Quiz 2 SEMESTER 2, ACADEMIC YEAR 2018/2019 Date: 29 November 2019

Name:Dr JBOStudent ID Number:Model AnswerSection:Lecturer: Dr. Jamaludin Bin Omar

Question:

Draw and label clearly a complete circuit diagram for a BJT differential amplifier that is biased with a **basic 3-transistor** current source at a constant current $I_Q = 1.5 \text{ mA}$. Your drawing **must include relevant values** for all components in the circuit and power supplies. The BJT diff amp has a differential gain for one-sided output $A_d = 150$. Power supplies are $V^+ = +10$ V and $V^- = -10$ V. Assume $\beta = 100$ and $V_{BE}(\text{on}) = 0.7$ V for all BJT in the circuit. *Hints: You are required to determine the value of* R_1 *in the basic 3-transistor current source and the value of* R_C *in the BJT differential amplifier that to be shown in your drawing.* [10 marks]

Answer:

$$I_{REF} = (V^+ - V_{BE3} - V_{BE5} - V^-) / (R_I) \notin I_Q$$

$$R_1 = (V^+ - V_{BE3} - V_{BE5} - V^-) / (I_Q)$$

$$= (10-0.7-0.7-(-10)) / (1.5m) = 12.4 \text{ k}$$
[0.5 mark]
[0.5 mark]

A_d	$=(\boldsymbol{g}_{\boldsymbol{m}} \boldsymbol{R}_{\boldsymbol{C}})/2$	
R _C	$= (2 A_d) / g_m$	[0.5 mark]
g_m	$= I_Q / (2V_T) = (1.5 \text{m})/(2 \text{x} 26 \text{m}) = 28.846 \text{ mA/V}$	[0.5 mark]
R_C	=(2x150)/(28.846m) = 10.4 k	[0.5 mark]

 $c = \frac{1}{2}$ mark

EEEB273/EEEB2014 - Quiz 2 SEMESTER 2, ACADEMIC YEAR 2018/2019 Date: 29 November 2019

Name:Dr JBOStudent ID Number:Model AnswerSection:Lecturer: Dr. Jamaludin Bin Omar

Question:

Draw and label clearly a complete circuit diagram for a BJT differential amplifier that is biased with a **basic 3-transistor** current source at a constant current $I_Q = 1.6$ mA. Your drawing **must include relevant values** for all components in the circuit and power supplies. The BJT diff amp has a differential gain for one-sided output $A_d = 150$. Power supplies are $V^+ = +11$ V and $V^- = -11$ V. Assume $\beta = 100$ and $V_{BE}(on) = 0.7$ V for all BJT in the circuit. *Hints: You are required to determine the value of* R_1 *in the basic 3-transistor current source and the value of* R_C *in the BJT differential amplifier that to be shown in your drawing.* [10 marks]

Answer:

$$I_{REF} = (V^+ - V_{BE3} - V_{BE5} - V^-) / (R_I) \notin I_Q$$

$$R_1 = (V^+ - V_{BE3} - V_{BE5} - V^-) / (I_Q)$$

$$= (11 - 0.7 - 0.7 - (-11)) / (1.6m) = 12.875 \text{ k}$$
[0.5 mark]
[0.5 mark]

A_d	$=(\boldsymbol{g}_{\boldsymbol{m}} \boldsymbol{R}_{\boldsymbol{C}})/2$	
R_C	$= (2 A_d) / g_m$	[0.5 mark
g_m	$= I_Q / (2V_T) = (1.6 \text{m})/(2 \text{x} 26 \text{m}) = 30.769 \text{ mA/V}$	[0.5 mark
R_C	=(2x150)/(30.769m) = 9.75 k	[0.5 mark

 $c = \frac{1}{2}$ mark

EEEB273/EEEB2014 - Quiz 2 SEMESTER 2, ACADEMIC YEAR 2018/2019 Date: 29 November 2019 ;

Name:	Dr JBO	
Student ID Number:	Model Answer	
Section:		
Lecturer: Dr. Jamaludin Bin Omar		

Question:

Draw and label clearly a complete circuit diagram for a BJT differential amplifier that is biased with a **basic 3-transistor** current source at a constant current $I_Q = 1.3$ mA. Your drawing must include relevant values for all components in the circuit and power supplies. The BJT diff amp has a differential gain for one-sided output $A_d = 160$. Power supplies are $V^+ = +12$ V and $V^- = -12$ V. Assume $\beta = 100$ and $V_{BE}(on) = 0.7$ V for all BJT in the circuit. *Hints: You are required to determine the value of* R_1 *in the basic 3-transistor current source and the value of* R_C *in the BJT differential amplifier that to be shown in your drawing.* [10 marks]

Answer:

I REF	$= (V^+ - V_{BE3} - V_{BE5} - V^-) / (R_1) \in I_Q$	[0.5 mark]
R_1	$= (V^+ - V_{BE3} - V_{BE5} - V^-) / (I_Q)$	[0.5 mark]
	=(12-0.7-0.7-(-12))/(1.3m) = 17.384 k	[0.5 mark]

A_d	$=(\boldsymbol{g}_{m} \boldsymbol{R}_{C})/2$	
R_C	$= (\mathbf{\hat{2}} A_d) / g_m$	[0.5 mark]
g_m	$= I_Q / (2V_T) = (1.3 \text{m})/(2 \text{x} 26 \text{m}) = 25 \text{ mA/V}$	[0.5 mark]
\tilde{R}_{C}	=(2x160)/(25m) = 12.8 k	[0.5 mark]

 $c = \frac{1}{2}$ mark

EEEB273/EEEB2014 - Quiz 2 SEMESTER 2, ACADEMIC YEAR 2018/2019 Date: 29 November 2019 :

Name:	Dr JBO	
Student ID Number:	Model Answer	
Section:		
Lecturer: Dr. Jamaludin Bin Omar		

Question:

Draw and label clearly a complete circuit diagram for a BJT differential amplifier that is biased with a **basic 3-transistor** current source at a constant current $I_Q = 1.4$ mA. Your drawing must include relevant values for all components in the circuit and power supplies. The BJT diff amp has a differential gain for one-sided output $A_d = 160$. Power supplies are $V^+ = +13$ V and $V^- = -13$ V. Assume $\beta = 100$ and $V_{BE}(on) = 0.7$ V for all BJT in the circuit. *Hints: You are required to determine the value of* R_1 *in the basic 3-transistor current source and the value of* R_C *in the BJT differential amplifier that to be shown in your drawing.* [10 marks]

Answer:

I REF	$= (V^{+} - V_{BE3} - V_{BE5} - V^{-}) / (R_{1}) \in I_{Q}$	[0.5 mark]
R_1	$= (V^+ - V_{BE3} - V_{BE5} - V^-) / (I_Q)$	[0.5 mark]
	= (13-0.7-0.7-(-13)) / (1.4m) = 17.571 k	[0.5 mark]

A_d	$=(\boldsymbol{g_m} \boldsymbol{R_C})/2$	
R _C	$= (2 A_d) / g_m$	[0.5 mark]
g_m	$= I_Q / (2V_T) = (1.4 \text{m})/(2 \text{x} 26 \text{m}) = 26.923 \text{ mA/V}$	[0.5 mark]
R_C	=(2x160)/(26.923m) = 11.885 k	[0.5 mark]

