Name:

Student ID Number:

Section Number: 01/02/03/04 A/B

Lecturer: Dr Jamaludin/Dr Fazrena Azlee

Table Number:

The National Energy University

College of Engineering

Department of Electronics and Communication Engineering

Test 1

SEMESTER 2, ACADEMIC YEAR 2018/2019

Subject Code	•	EEEB273/EEEB2014
Course Title	•	Electronics Analysis & Design II
Date	•	1 December 2018
Time Allowed	•	2 hours

Instructions to the candidates:

- 1. Write your Name and Student ID Number. Indicate your Section Number and Lecturer's Name. Write also your Table Number.
- 2. Write all your answers using pen. DO NOT USE PENCIL except for the diagram.
- 3. ANSWER ALL QUESTIONS. Show all calculations clearly. Every value or parameter must be written with its correct Unit.
- 4. WRITE YOUR ANSWER ON THIS QUESTION PAPER.

NOTE: DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO.

Question	Q1	Q2	Q2	Q3	Q3	Q4	Total
Number	(a-d)	(a)	(b)	(a)	(b)	(a-b)	
Marks							

BASIC FORMULA FOR TRANSISTOR

<u>BJT</u>

$$i_{C} = I_{S} e^{v_{BE}/V_{T}}; \text{npn}$$
$$i_{C} = I_{S} e^{v_{EB}/V_{T}}; \text{pnp}$$
$$i_{C} = \alpha i_{E} = \beta i_{B}$$
$$i_{E} = i_{B} + i_{C}$$
$$\alpha = \frac{\beta}{\beta + 1}$$

;Small signal

 $\beta = g_m r_\pi$ $g_m = \frac{I_{CQ}}{V_T}$ $r_\pi = \frac{\beta V_T}{I_{CQ}}$ $r_o = \frac{V_A}{I_{CQ}}$ $V_T = 26 \text{ mV}$

MOSFET

; N – MOSFET

$$v_{DS}(\text{sat}) = v_{GS} - V_{TN}$$

 $i_D = K_n [v_{GS} - V_{TN}]^2$
 $K_n = \frac{k'_n}{2} \cdot \frac{W}{L}$

; P – MOSFET $v_{SD}(\text{sat}) = v_{SG} + V_{TP}$ $i_D = K_p [v_{SG} + V_{TP}]^2$ $K_p = \frac{k'_p}{2} \cdot \frac{W}{L}$

;Small signal

$$g_m = 2\sqrt{K_n I_{DQ}}$$
; N - MOSFET
 $g_m = 2\sqrt{K_p I_{DQ}}$; P - MOSFET
 $r_o \cong \frac{1}{\lambda I_{DO}}$

Quadratic formula :

$$Ax^{2} + Bx + C = 0 \quad \rightarrow \quad x = \frac{-B \pm \sqrt{B^{2} - 4AC}}{2A}$$

This is extra page for answers. Please indicate question number clearly.

QUESTION 1 [30 marks]

For all **BJT current sources mentioned** in **this Question 1**, all transistors are matched and have same parameters. The transistor parameters are: $\beta = 40$, $V_{BE}(on) = 0.7$ V, and $V_A = 120$ V. The circuit parameters for the current sources are: $V^+ = 12$ V and $V^- = -12$ V.

- (a) **Design a Two-transistor** current source, a **Three-transistor** current source, and a **Wilson** current source such that $I_{REF} = 1.2 \text{ mA}$. [7.5 marks]
- (b) Calculate values of output current (I_0) and output resistance (R_0) for all the BJT current sources given in part (a). [13.5 marks]
- (c) Find the change in the output current (dI_0) as the output voltage for all the BJT current sources given in part (a) had changed by +2.3 V. [6 marks]
- (d) Based on your calculations in **part (b)** and **part (c)**, which current source has the most stable I_0 , which current source has the medium stable I_0 , and which current source has the least stable I_0 from all the BJT current sources given in **part (a)**? Explain clearly your answers. [3 marks]

Answers for Question 1

Answers for Question 1 (Continued)

QUESTION 2 [30 marks]

- (a) It is required that a **PMOS current mirror** circuit is implemented using transistors M_1 and M_2 , and a resistor R_1 .
 - (i) Sketch the PMOS current mirror. Indicate the currents I_{REF} and I_{O} [6 marks]
 - (ii) Show that the current relationships are as is Equation 1. [4 marks]

$$I_O = \frac{(W/L)_2}{(W/L)_1}$$
. I_{REF} Equation 1

Answers for Question 2(a)

- (b) An NMOS cascode current source is shown in Figure 1. The currents are $I_{REF} = 2\text{mA}$ and $I_O = 40 \ \mu\text{A}$. It is given that $K_{n1} = K_{n3} = K_{n4} = 25 \ \text{mA/V}^2$. The transistor parameters are $k_n' = 0.5 \text{m A/V}^2$, $V_{TN} = 0.9 \text{ V}$ and $\lambda = 0.02 \text{ V}^{-1}$.
 - (i) Find all V_{GS} voltages for the circuit. [5 marks]
 - (ii) **Design** the current source to produce $I_{REF} = 2 \text{ mA}$ and $I_0 = 40 \mu \text{A}$. [5 marks]
 - (iii) Find output impedance (R_0) of the cascode current source. [4 marks]
 - (iv) Calculate percent change in output current I_0 if V_{D4} changes by 2.5 V. [4 marks]
 - (v) If a 2-transistor current source is used instead, will the percent change in *I_O* increase or decrease? Justify your answer. [2 marks]

Answers for Question 2(b)

Figure 1

OUESTION 3 [20 marks]

(a) **Draw** a complete circuit diagram for a **PNP** differential amplifier with resistive load biased by a **cascode** current source. Transistors Q_1 and Q_2 are used in the differential amplifier while transistors Q_3 until Q_6 are used in the **cascode** current source. **Label the diagram clearly**, showing all necessary currents, resistors, and **PNP** BJTs used in the circuit.

[5 marks]

Answers for Question 3(a)

- (b) Figure 2 has the transistor parameters of $\beta = 120$, $V_{BE}(\text{on}) = 0.7$ V, $V_A = \infty$ for Q_1 and Q_2 , and $V_A = 100$ V for Q_3 and Q_4 . Given $R_C = 5$ k Ω .
 - (i) **Calculate** R_1 such that $I_Q = 4$ mA. [5 marks]
 - (ii) **Determine** output of the differential amplifier, V_{O2} , if $v_1 = v_2 = v_{cm} = 0$.

[5 marks]

(iii) Determine V_{CE4} for $v_1 = v_2 = v_{cm} = 0$. [5 marks]

Answers for Question 3(b)

Figure 2

OUESTION 4 [20 marks]

Please refer to a **BJT** differential amplifier circuit in **Figure 3**. From small-signal analysis the expression of the output voltage at V_{C2} is shown in **Equation 2**. It is given that for the transistors $V_{BE}(\mathbf{on}) = 0.7 \text{ V}, \beta = 250, V_A$ for Q_1 and Q_2 is **infinity**, while for Q_3 and Q_4 , $V_A = 100 \text{ V}$. For the circuit $R_1 = 37 \text{ k}\Omega$, $R_C = 30 \text{ k}\Omega$, and $R_B = 500 \Omega$. For the differential amplifier, **neglect the base currents**.

$$v_{O} = \frac{\beta R_{C}}{2(r_{\pi} + R_{B})} \cdot v_{d} - \frac{g_{m}R_{C}}{1 + \frac{2(1+\beta)R_{O}}{r_{\pi} + R_{B}}} \cdot v_{cm}$$
 Equation 2

- (a) Find the differential gain (A_d), the common mode gain (A_{cm}), and the common mode rejection ratio CMRR (dB) of the circuit. [13 marks]
- (b) It is given for the inputs, $v_1 = 210 \times 10^{-6} \sin \omega t V$ and $v_2 = 190 \times 10^{-6} \sin \omega t V$. Calculate the output voltage v_o . [7 marks]

Answers for Question 4

Answers for Question 4 (Continued)

This is extra page for answers. Please indicate question number clearly.