Name:

Student ID Number:

Section Number: 01/02/03/04 A/B

Lecturer: Dr Jamaludin/ Dr Fazrena Azlee

Table Number:

The National Energy University

College of Engineering

Department of Electronics and Communication Engineering

Test 2

SEMESTER 2, ACADEMIC YEAR 2018/2019

Subject Code	•	EEEB273/EEEB2014
Course Title	:	Electronics Analysis & Design II
Date	•	5 January 2019
Duration	:	2 hours

Instructions to the candidates:

- 1. Write your Name and Student ID Number. Indicate your Section Number and Lecturer's Name. Write also your Table Number.
- 2. Write all your answers using pen. DO NOT USE PENCIL except for the diagram.
- 3. **ANSWER ALL QUESTIONS. Show clearly** all your calculations. Every value **must** be written with its correct Unit.

4. WRITE YOUR ANSWER ON THIS QUESTION PAPER.

NOTE: DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO.

Question Number	Q1 (a)	Q1 (bc)	Q2 (a)	Q2 (bc)	Q3 (ab)	Q4 (a)	Q4 (b)	Total
Marks								
СО	9	3	9	3	5	9	4	

☺ GOOD LUCK! ☺

BASIC FORMULA FOR TRANSISTOR

<u>BJT</u>

$$i_{C} = I_{S} e^{v_{BE}/V_{T}}; \text{npn}$$
$$i_{C} = I_{S} e^{v_{EB}/V_{T}}; \text{pnp}$$
$$i_{C} = \alpha i_{E} = \beta i_{B}$$
$$i_{E} = i_{B} + i_{C}$$
$$\alpha = \frac{\beta}{\beta + 1}$$

;Small signal

 $\beta = g_m r_\pi$ $g_m = \frac{I_{CQ}}{V_T}$ $r_\pi = \frac{\beta V_T}{I_{CQ}}$ $r_o = \frac{V_A}{I_{CQ}}$ $V_T = 26 \text{ mV}$

MOSFET

; N – MOSFET

$$v_{DS}(\text{sat}) = v_{GS} - V_{TN}$$

 $i_D = K_n [v_{GS} - V_{TN}]^2$
 $K_n = \frac{k'_n}{2} \cdot \frac{W}{L}$

; P – MOSFET $v_{SD}(\text{sat}) = v_{SG} + V_{TP}$ $i_D = K_p [v_{SG} + V_{TP}]^2$ $K_p = \frac{k'_p}{2} \cdot \frac{W}{L}$

;Small signal

$$g_m = 2\sqrt{K_n I_{DQ}}$$
; N - MOSFET
 $g_m = 2\sqrt{K_p I_{DQ}}$; P - MOSFET
 $r_o \cong \frac{1}{\lambda I_{DO}}$

Quadratic formula :

$$Ax^{2} + Bx + C = 0 \quad \rightarrow \quad x = \frac{-B \pm \sqrt{B^{2} - 4AC}}{2A}$$

This is extra page for answers. Please indicate question number clearly.

QUESTION 1 [30 marks]

The circuit in Figure 1 has a pair of NPN transistors as input devices and three PNP transistors connected as an active load. The differential amplifier circuit is biased with a constant current source $I_Q = 0.24$ mA that has output resistance $R_{OCS} = 50$ MQ.

The transistor parameters are: $\beta = 200$, $V_{A1} = V_{A2} = 100$ V, $V_{A3} = V_{A4} = 60$ V, and $V_{A5} = \infty$.

- (a) The DC currents in the differential amplifier are **balanced**, that is $I_1 = I_2 = I_3 = I_4$. Show that $I_O \cong \frac{I_Q}{\beta(1+\beta)}$ and **calculate** the value of I_O . [10 marks]
- (b) **Determine** R_L such that the differential-mode voltage gain (A_d) of the differential amplifier with active load in the Figure 1 is reduced to 80% of its open-circuit differential-mode voltage gain value. [15 marks]
- (c) Design <u>a better active load circuit</u> that can replace the active load in the Figure 1. Discuss why your design is better than the circuit in Figure 1. [5 marks]

Figure 1

Answers for Question 1 (Continued)

QUESTION 2 [30 marks]

Figure 2 shows a MOSFET differential amplifier circuit with active load biased with constant current source I_Q . It is given that $V^+ = 5$ V, V = -5 V, and $I_Q = 0.3$ mA.

The N-MOSFET parameters are: $V_{TN} = 0.8 \text{ V}$, $k'_n = 200 \text{ }\mu\text{A}/\text{V}^2$ and $\lambda_n = 0.01 \text{ V}^{-1}$, while the P-MOSFET parameters are: $V_{TP} = -0.7 \text{ V}$, $k'_p = 80 \text{ }\mu\text{A}/\text{V}^2$ and $\lambda_p = 0.015 \text{ V}^{-1}$.

- (a) State the function of each transistor M_1 to M_6 in the Figure 2. [6 marks]
- (b) **Calculate** the voltages V_{GS1} , V_{SG5} and V_{D1} .
- (c) **Calculate** the differential gain (A_d) of the circuit if given: $(W/L)_{1-2} = 10$, $(W/L)_{3-6} = 30$.

[12 marks]

[12 marks]

Figure 2

Answers for Question 2 (Continued)

OUESTION 3 [20 marks]

Consider a **multistage amplifier** shown in **Figure 3**. Study the **Figure 3** carefully. The output stage in the circuit is a **Darlington pair** emitter-follower configuration.

Assume $\beta = 120$ for all NPN transistors and $\beta = 90$ for all PNP transistors. Let $V_{A7} = 60$ V for Q_7 , $V_{A11} = 120$ V for Q_{11} , and $V_A = \infty$ for all other transistors. Values for resistors are $R_2 = R_3 = 0.2$ k Ω and $R_4 = 5$ k Ω .

Figure 3

Given that $I_{C7} = I_{C11} = I_Q = 0.3 \text{ mA}$ and $I_{C8} = 1.2 \text{ mA}$:

- (a) **Determine** the effective resistance connected between collector of Q_7 and signal ground (i.e. determine R_{L7} shown in the Figure 3). [13 marks]
- (b) **Determine** output resistance (\mathbf{R}_o) of the output stage. [7 marks]

QUESTION 4 [20 marks]

- (a) Sketch the Class-B output stage circuit employing NPN and PNP BJTs of Q_n and Q_p . Explain the operation of the Class-B circuit. [5 marks]
- (b) A Class-A output stage with BJTs is shown in Figure 4. It is given that $V^{+} = 5$ V, V = -5 V, and $R_{L} = 100 \Omega$. Assume all the transistors are matched with $I_{S} = 9 \times 10^{-15}$ A, $V_{CE}(\text{sat}) = 0.3$ V, and $V_{A} = \infty$. Neglect the base currents.
 - (i) **Calculate** the maximum possible output voltage range of the circuit.

[2 marks]

(ii) **Determine** the **minimum** required biasing current I_Q for Class A operation.

[3 marks]

(iii) The output voltage range is now limited to $-4V \le v_0 \le +4V$. Calculate the required range of the input voltage v_I . [10 marks]

Figure 4

Answers for Question 4 (Continued)

This is extra page for answers. Please indicate question number clearly.