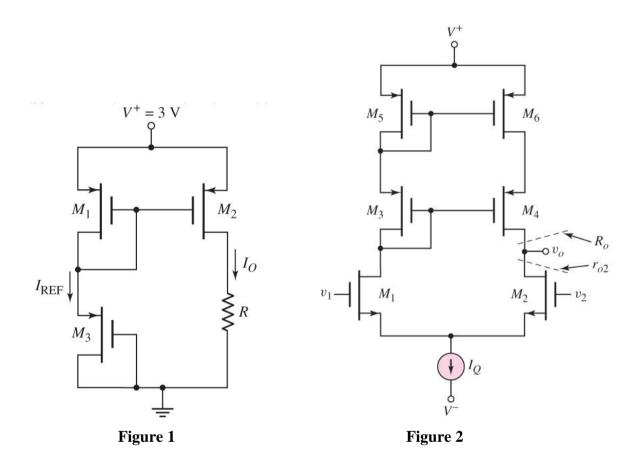


COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION

SEMESTER 3 2018 / 2019

PROGRAMME	: Bachelor of Electrical & Electronics Engineering (Honours) Bachelor of Electrical Power Engineering (Honours)
SUBJECT CODE	: EEEB273
SUBJECT	: ELECTRONIC ANALYSIS AND DESIGN II
DATE	: April/May 2019
DURATION	: 3 hours

INSTRUCTIONS TO CANDIDATES:


- 1. This paper contains **FIVE** (5) questions in **EIGHT** (8) pages.
- 2. Answer **ALL** questions.
- 3. Write **all** answers in the answer booklet provided. **Use pen** to write your answer.
- 4. Write answer to different question on **a new page**.

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PRINTED PAGES INCLUDING THIS COVER PAGE.

Question 1 [20 marks]

Figure 1 shows a two-transistor MOSFET current mirror. The transistor parameters are (a) assumed to be $V_{TP} = -0.4$ V, $k'_p = 60 \ \mu A/V^2$, and $\lambda = 0$. The transistor width-to-length ratios are $(W/L)_1 = 25$, $(W/L)_2 = 15$, and $(W/L)_3 = 5$. [10 marks]

Calculate I₀, I_{REF}, V_{SG1}, and V_{SG3}.

- (b) Figure 2 shows a MOSFET diff-amp with a Cascode active load. Assume that NMOS devices are available with the following parameters: $V_{TN} = 0.5 \text{ V}$, $k'_n = 80 \ \mu \text{A}/\text{V}^2$, $\lambda_n =$ 0.02 V⁻¹, and $(W/L)_1 = (W/L)_2 = 10$. Assume that PMOS devices are available with the following parameters: $V_{TP} = -1.0 \text{ V}, k'_p = 40 \ \mu\text{A/V}^2, \lambda_p = 0.02 \text{ V}^{-1}$, and $(W/L)_p = 20$. The circuit parameters are $V^+ = 5$ V and V = -5 V. The bias current is $I_Q = 0.2$ mA.
 - (i) **Determine** the output resistance, R_0 , of the **Cascode** active load. [6 marks]
 - (ii) Find the differential-mode voltage gain, A_d . [4 marks]

Question 2 [20 marks]

- (a) Design a three-transistor BJT current source using PNP transistors so that its output current (I₀) is 0.8 mA. All transistors are matched. The transistor parameters are β = 50, V_{EB}(on) = 0.6 V, and V_A = ∞. The circuit parameters are V⁺ = 7.5 V and V⁻⁻ = -7.5 V. Draw the circuit diagram of your design. Show clearly all calculations and values in the circuit diagram as marks are given according to this. [10 marks]
- (b) A basic differential pair is shown in Figure 3. It is given that $V^+ = 15$ V, $V^- = -15$ V, resistor $R_C = 5$ k Ω , $I_Q = 2$ mA, and transistor parameters are $\beta = 100$, voltages $V_A = 100$ V, $V_{BE}(on) = 0.7$ V, and $V_{CE}(sat) = 0.3$ V.

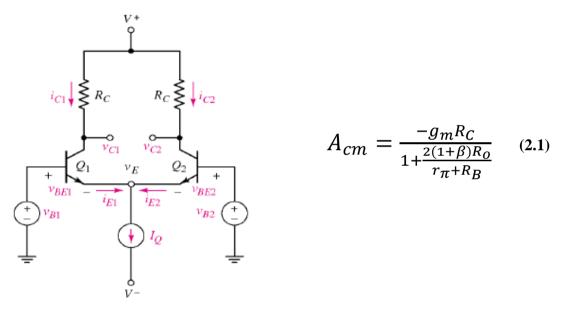


Figure 3

- (i) Calculate the one-sided small-signal differential voltage gain (A_d) of the differential amplifier.
 [2 marks]
- (ii) The constant current source of Figure 3 that is providing the current I_Q is implemented using the basic two transistor current source. Find the value of A_{cm} , the common-mode voltage gain of the differential-amplifier, using Equation (2.1) given above near the Figure 3. Assume $R_B = 0$. [2 marks]
- (iii) The differential amplifier shown in Figure 3 has a PNP three-transistor current mirror connected as an active load. Redraw Figure 3 with the new active load. Assume same values of β and V_A for PNP. Determine the differential mode gain (A_d) and how much the A_d had changed using the new active load. [6 marks]

Question 3 [20 marks]

(a) A simple bipolar op-amp is shown in **Figure 4**. Study the **Figure 4** carefully.

Neglect base currents. Assume parameters for all transistors are $V_{BE}(\text{on}) = 0.7 \text{ V}$, $\beta = 200$, and $V_A = \infty$. Bias current for the differential amplifier can be calculated to be $I_Q = 1.2 \text{ mA}$. With small-signal analysis, values of gain A_{d1} for the differential amplifier, $r_{\pi 3}$, and gain $A_{\nu 2}$ for the gain stage can be found using the following Equations (3.1) to (3.3).

$$A_{d1} = \frac{V_{o2}}{v_d} = \frac{g_{m2}}{2} \left(R_C || R_{i2} \right)$$
(3.1)

$$r_{\pi 3} \cong \beta r_{\pi 4} \tag{3.2}$$

$$A_{\nu 2} \cong \frac{I_{R4}}{2V_T} (R_5)$$
 (3.3)

Calculate the **total overall small-signal voltage gain** (A_d) for the bipolar op-amp.

[10 marks]

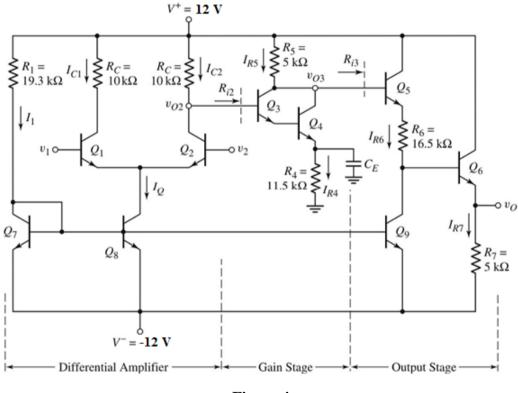


Figure 4

(b) An idealized Class-B output stage is to deliver 10 Watts of average power to a load for a symmetrical input sine wave. The maximum output voltage (V_p) required should be 80% of the power supply voltage V_{CC} . Given that the power supply voltage V_{CC} is 24 V and the average current in the circuit is $I(ave) = V_p / (\pi R_L)$, where R_L is the load. Calculate the value of the output stage's power conversion efficiency (η) . [10 marks]

Question 4 [20 marks]

(a) The **741 op-amp** is shown in Figure 5. Assume that $V_{BE}(\mathbf{on}) = V_{EB}(\mathbf{on}) = 0.7 \text{ V}$, $\beta_n = 200$, $\beta_p = 60$, $V_{AN} = 200 \text{ V}$, and $V_{AP} = 100 \text{ V}$. The area of transistor Q_{13B} is **75%** of transistor Q_{12} . It is given that $I_{REF} = I_{C12} = 0.4 \text{ mA}$. Calculate the small signal input resistance of the Gain stage (i.e. equivalent resistance looking into the base of Q_{16}). [10 marks]

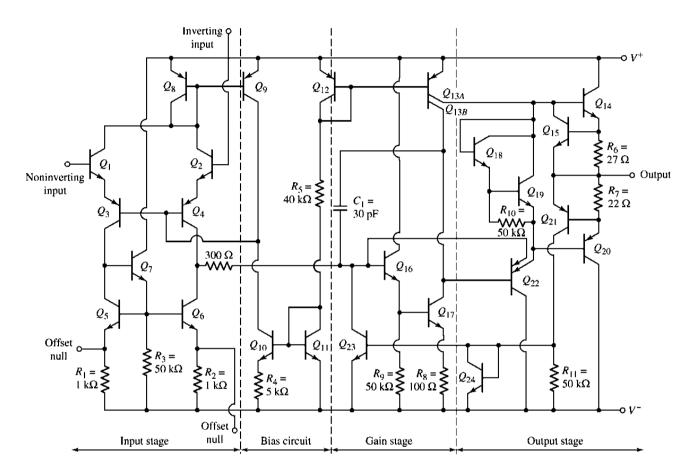


Figure 5

Question 4 (Continue)

- (b) Consider the MC14573 op-amp in Figure 6. Assume transistor parameters for N-MOSFET are $V_{TN} = 0.5$ V, $K_n = 100 \ \mu \text{A/V}^2$ and $\lambda_n = 0.01$ V⁻¹; and transistor parameters for P-MOSFET are $V_{TP} = -0.5$ V, $K_p = 125 \ \mu \text{A/V}^2$, and $\lambda_p = 0.02$ V⁻¹. Given that $V_{SG5} = 1.5$ V:
 - (i) Find the quiescent bias currents for all transistors in the Figure 6. [4 marks]
 - (ii) Determine the overall small signal differential-mode voltage gain for the MC14573 op-amp in the Figure 6. Gain for the output stage consists of transistor M_7 and M_8 is given by equation $A_{v2} = -g_{m7}(r_{o7}||r_{o8})$. [6 marks]

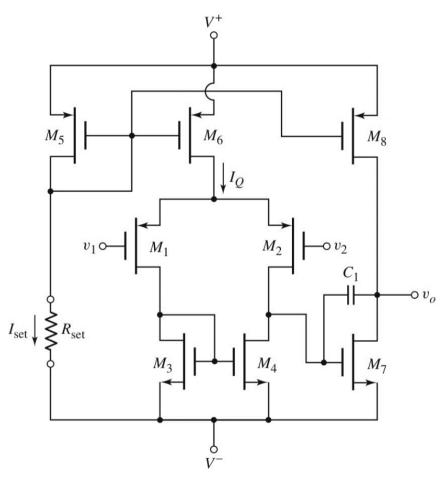


Figure 6

Question 5 [20 marks]

(a) List two (2) ideal op-amp characteristics.

[2 marks]

(b) **Figure 7** shows a **difference amplifier** using ideal op-amps.

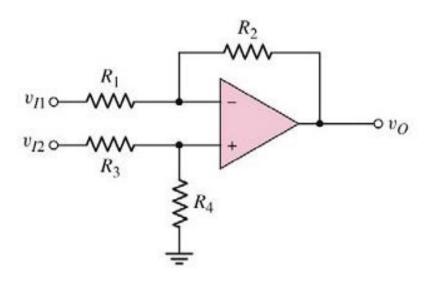


Figure 7

With proper analysis, **show** that

$$v_{O} = \left(1 + \frac{R_{2}}{R_{1}}\right) \left(\frac{R_{4} / R_{3}}{1 + R_{4} / R_{3}}\right) v_{I2} - \left(\frac{R_{2}}{R_{1}}\right) v_{I1}$$

(c) For the difference amplifier in the Figure 7, let $R_1 = 12 \text{ k}\Omega$, $R_2 = 120 \text{ k}\Omega$, $R_3 = 40 \text{ k}\Omega$, and $R_4 = 440 \text{ k}\Omega$. Determine *CMRR*(dB). [8 marks]

-END OF QUESTION PAPER-

[10 marks]

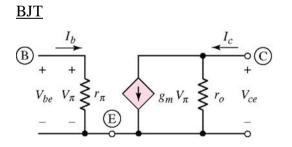
APPENDIX:

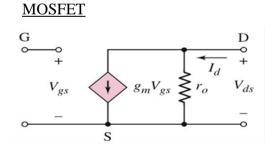
A) BASIC FORMULA FOR TRANSISTOR

BJT

$$i_C = I_S e^{v_{BE}/V_T}$$
; NPN
 $i_C = I_S e^{v_{EB}/V_T}$; PNP
 $i_C = \beta i_B = \frac{\beta}{\beta + 1} i_E$
 $i_E = i_B + i_C$

;Small signal


$$\beta = g_m r_{\pi}$$
$$g_m = \frac{I_{CQ}}{V_T}$$
$$r_{\pi} = \frac{\beta V_T}{I_{CQ}}$$
$$r_o = \frac{V_A}{I_{CQ}}$$
$$V_T = 26 \text{ mV}$$


MOSFET

; N – MOSFET

$$v_{DS}(\text{sat}) = v_{GS} - V_{TN}$$

 $i_D = K_n [v_{GS} - V_{TN}]^2$
 $K_n = \frac{\mu_n C_{ox} W}{2L} = \frac{k'_n}{2} \cdot \frac{W}{L}$
; P – MOSFET
 $v_{SD}(\text{sat}) = v_{SG} + V_{TP}$
 $i_D = K_p [v_{SG} + V_{TP}]^2$
 $K_p = \frac{\mu_p C_{ox} W}{2L} = \frac{k'_p}{2} \cdot \frac{W}{L}$
; Small signal
 $g_m = 2\sqrt{K_n I_{DQ}}$; N – MOSFET
 $g_m = 2\sqrt{K_p I_{DQ}}$; P – MOSFET
 $r_o \cong \frac{1}{\lambda I_{DQ}}$

B) <u>HYBRID-π EQUIVALENT CIRCUITS</u>

C) QUADRATIC FORMULA

$$Ax^{2} + Bx + C = 0 \qquad \rightarrow \quad x = \frac{-B \pm \sqrt{B^{2} - 4AC}}{2A}$$