Name:

Student ID Number:

Section Number: 01A

Lecturer: Prof Md Zaini & Dr Jamaludin

Table Number:

The National Energy University

College of Engineering Department of Electrical Engineering

Midterm Test

SEMESTER 3, ACADEMIC YEAR 2018/2019

Subject Code	•	EEEB273
Course Title	•	Electronics Analysis & Design II
Date	•	5 April 2019
Duration	•	2 hours

Instructions to the candidates:

- 1. Write your **Name** and **Student ID Number**.
- 2. Write all your answers using pen. DO NOT USE PENCIL except for the diagram.
- 3. **ANSWER ALL QUESTIONS. Show clearly** all your calculations. Every value **must** be written with its correct Unit.
- 4. WRITE YOUR ANSWER ON THIS QUESTION PAPER.

NOTE: DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO.

☺ GOOD LUCK! ☺

Question Number	Q1	Q1 (bcd)	Q2 (abc)	Q3 (ab)	Q4 (ab)	Total
Marks	(a)	(bed)	(abc)	(40)	(40)	Total
СО	9	1	3	1	2	

BASIC FORMULA FOR TRANSISTOR

<u>BJT</u>

$$i_{C} = I_{S} e^{v_{BE}/V_{T}}; \text{npn}$$
$$i_{C} = I_{S} e^{v_{EB}/V_{T}}; \text{pnp}$$
$$i_{C} = \alpha i_{E} = \beta i_{B}$$
$$i_{E} = i_{B} + i_{C}$$
$$\alpha = \frac{\beta}{\beta + 1}$$

;Small signal

 $\beta = g_m r_\pi$ $g_m = \frac{I_{CQ}}{V_T}$ $r_\pi = \frac{\beta V_T}{I_{CQ}}$ $r_o = \frac{V_A}{I_{CQ}}$ $V_T = 26 \text{ mV}$

MOSFET

; N – MOSFET

$$v_{DS}(\text{sat}) = v_{GS} - V_{TN}$$

 $i_D = K_n [v_{GS} - V_{TN}]^2$
 $K_n = \frac{k'_n}{2} \cdot \frac{W}{L}$

; P – MOSFET $v_{SD}(\text{sat}) = v_{SG} + V_{TP}$ $i_D = K_p [v_{SG} + V_{TP}]^2$ $K_p = \frac{k'_p}{2} \cdot \frac{W}{L}$

;Small signal

$$g_m = 2\sqrt{K_n I_{DQ}}$$
; N - MOSFET
 $g_m = 2\sqrt{K_p I_{DQ}}$; P - MOSFET
 $r_o \cong \frac{1}{\lambda I_{DQ}}$

Quadratic formula :

$$Ax^{2} + Bx + C = 0 \quad \rightarrow \quad x = \frac{-B \pm \sqrt{B^{2} - 4AC}}{2A}$$

This is extra page for answers. Please indicate question number clearly.

QUESTION 1 [25 marks]

You are required to **design** a **Widlar** current source using **NPN** transistors such that $I_{REF} = 2$ **mA** and $I_O = 50 \mu$ A. Let $V^+ = 15$ V and $V^- = 0$ V. The transistor are matched and $V_{BE} = 0.7$ V at 1 mA.

- (a) **Draw** the circuit and **clearly label** all the resistors and transistors. [4 marks]
- (b) **Derive** the I_{REF} and I_0 relationship of the circuit, showing all your steps is getting the relationship. [6 marks]
- (c) **Design** the circuits and **clearly show all calculations** as marks are given according to this.

[10 marks]

(d) Given V_A and β for Q_2 is 100 V and 50 respectively, determine the output resistance, R_O , of the Widlar current source. [5 marks]

Answers for Question 1 (Continued)

QUESTION 2 [25 marks]

Figure 1 shows a differential amplifier has a pair of PNP bipolar as input devices and a pair of NPN bipolar connected as an active load. The circuit has $I_Q = 0.2$ mA bias current and the transistor parameters are $\beta = 100$ and $V_A = 100$ V.

- (a) Calculate I_0 such that the DC currents in the diff-amp are balanced. [6 marks]
- (b) **Determine** the **open-circuit** differential-mode voltage gain, A_d . [12 marks]
- (c) Find the differential-mode voltage gain if a load resistance $R_L = 250 \text{ k}\Omega$ is connected to the output. [7 marks]

Figure 1

Answers for Question 2 (Continued)

QUESTION 3 [25 marks]

For a **MOSFET current source** circuit shown in **Figure 2**, transistor parameters are $V_{TN} = 0.7$ V, $k'_n = 70 \ \mu \text{A/V}^2$, and $\lambda = 0.015 \ \text{V}^{-1}$. The transistor aspect ratios are $(W/L)_1 = 20$, $(W/L)_2 = 12.5$, and $(W/L)_3 = 3$.

(a) **Determine** V_{GS1} , V_{GS3} , I_{REF} , I_O , and V_{DS2}

[15 marks] [10 marks]

(b) **Find** I_O at $V_{DS2} = 2.5$ V

Figure 2

Answers for Question 3 (Continued)

[15 marks]

QUESTION 4 [25 marks]

Consider the diff-amp shown in Figure 3. The transistor parameters are: $K_{n1} = K_{n2} = 0.1 \text{ mA/V}^2$ and $K_{n3} = K_{n4} = 0.3 \text{ mA/V}^2$. Other parameters for all transistors are $\lambda = 0$ and $V_{TN} = 1 \text{ V}$.

- and $\mathbf{K}_{n3} \mathbf{K}_{n4} \mathbf{0.5}$ mA/V. Other parameters for an transitions are $\lambda = \mathbf{0}$ and V
- (a) Find the values of I_1 , I_Q , V_{GS4} , V_{GS2} , v_{O1} , and v_{O2} .
- (b) **Determine** the maximum range of the common-mode input voltage, i.e. find the values for v_{CM} (max) and v_{CM} (min). [10 marks]

Figure 3

Answers for Question 4 (Continued)

This is extra page for answers. Please indicate question number clearly.