
System Administration (CSNB113) – Lab 8

1 of 4
COIT SN 2013

S
e

c
:

S
tu

d
e
n

t-
ID

:

N
a
m

e
:

Topics: Shell scripts and programming.

This lab exercise is to be submitted at the end of the lab session!

We will do a lot of shell programming from here onwards. Hopefully, you are able by now to use vi!?!

Create a small file with vi, with the file name my_first. The command to do that is

vi my_first

#!/bin/bash
This is my first shell program!
echo "Hello World" # This is another comment

The first line is the 'shebang' that tells us which command interpreter we want our small program to
use. In this case, it will be /bin/bash. How does one know? Simple:
which bash

'which' tells us which program will be called when you type a command.
The second line is a comment. It is not necessary, but helpful: it is a comment. The third line says
what to do: type ('echo') the string "Hello World" on the prompt.

This is not much of a program, since you get the same when you type
echo "Hello World"

Now you want to execute, that is run it. This is being done with ./ (DotSlash):
./my_first

Why would this not work? ls -l my* helps you:
ls -l my*

__

The permissions are wrong; the 'x' is missing throughout. What is the correct command to give
e'x'ecute permission to owner, group and world?

__

Try again to run it now:
./my_first

__

If your lecturer asks you to type "I will never be naughty" 10 times, it makes a lot of sense to write a
program. Call it my_second:

#!/bin/bash
for ROUND in 1 2 3 4 5 6 7 8 9

10 do
echo "I will never be

naughty" done

Run this program, and debug it, if necessary, until it works.

System Administration (CSNB113) – Lab 8

2 of 4
COIT SN 2013

Be careful about the '1 2 3 4 5 6 7 8 9 10'. These are NOT numbers (integers) by default. On the
contrary, by default shell script variables are strings.
You can prove that easily by changing one line in your program:

#!/bin/bash
for ROUND in Today is a

Wednesday do
echo "I will never be

naughty" done

You see that the command interpreter just takes one 'item' after the other when executing a for-
loop.
Of course, it is also possible to use the loop variable:

#!/bin/bash
for ROUND in Today is a

Wednesday do
echo "$ROUND"

done

But when you have to write the sentence 100 times? Call it my_third:

#!/bin/bash

number=0
while [$number -lt 100]; do echo

"I will never be naughty"

number=$((number + 1))
done

This is a so-called 'while- loop', because it is repeated (it loops) as long as 'number' is less than 100.
Whenever it is looped, the number is increased.
The ((…)) is specific to shell script: It means, to force the process as arithmetic expression. Shell
script is not often used to make mathematical calculations, therefore expressions and variables are
by default considered to be strings, as shown above.
On the other hand, you can see that the numeric relationship 'less than' (-lt) is considering the

loop variable number as a numeral.

Unfortunately, you have been naughty in a number of courses. So you decide to write it for different
lecturers. What to do? Simple: copy my_third to my_prog, using the following command:

__

and then simply edit my_prog by inserting a $1 and a $2:

#!/bin/bash

number=0
while [$number -lt 100]; do

echo "I will never be naughty $1

$2" number=$((number + 1))
done

System Administration (CSNB113) – Lab 8

3 of 4
COIT SN 2013

Call this program with an argument, like

./my_prog Mr Johns

You see, Mr is the first, Johns the second argument. So $1 will be Mr, $2 will be Johns. Once you
have to write the sentence 100 times for Puan Eliza, you call it like
./my_prog Puan Haliza

Let's check if it actually echos the lines 100 times:

./my_prog Puan Haliza | wc -l

(wc stands for 'word count' and actually counts characters, words, and lines. Since we only wanted to
know the number of lines, option '-l' gives the number of lines only.)

All these programs were doing repetitions, and you have seen how a repetition can be programmed.

Next we will look into programs making a selection. Name the program 'first_selection'. It
should contain the following lines:

#!/bin/bash
if ["$1" = "1"]; then

echo "The first choice is

nice" elif ["$1" = "2"]; then
echo "The second choice is just as

nice" elif ["$1" = "3"]; then
echo "The third choice is

excellent" else
echo "I see you were wise enough not to

choose" echo "You win"
fi

Call it by passing the arguments 1 2 3 and nothing:

./first_selection 1

./first_selection 2

./first_selection 3

./first_selection

Here, a comparison was used: The parameter passed ($1) is compared with 1, then with 2 and

finally with 3. If it equals either 1, 2 or 3, the next command is executed. If it equals neither 1 nor 2 nor

3, the statement 'else' is executed.

It is also possible, to insert the output of a shell command into a program. Make sure to name it
date_and_time You will need this program later in this exercise.

#!/bin/bash

echo "The current date is: " `date`

Those strange, backward apostrophes, called backticks, indicate to shell script, that the command
within these apostrophes (here: date) must be run.

System Administration (CSNB113) – Lab 8

4 of 4
COIT SN 2013

System Administration (CSNB113) – Lab VII

The three major concepts for programming have been introduced:
1. Sequence (one command is executed after the other, from top to bottom)
2. Selection (it is possible to skip some lines depending on some situation)
3. Repetition (a certain number of lines are repeated as often as one desires)

Often, we need to use a variable in programming; and likewise in shell script.

In shell script, we have agreed (convention) to use UPPERCASE for

variables. In the following, we will write one small program using a variable.

#!/bin/bash

our first program containing a shell

variable FIRSTVAR="Uniten"
echo "I am student of $FIRSTVAR"

Write and run this program.

You can see, that the Dollar-Sign ($) replaces the variable FIRSTVAR. What happens if you remove
this Dollar sign? (Edit the file!)

__

__

Last, make your program date_and_time available system-wide (check the lecture slides on the
HowTo).

Hint: Usually, we place programs that are added to the system by the user (system administrator),

and to be used by all users, into /usr/local/bin/.

Before you continue, make sure that your program is now a system-wide program! (By going to any
other directory and check if you can still run the program.)

In order to prove that you did the right thing,

$ script
Lab_seven cd /

$ which date_and_time
$ date_and_time
$ exit

$ echo sn012345 | mailx -a Lab_seven \

-s "Lab seven" surizal@metalab.uniten.edu.my

The explanation here is rather simple:

1. echo sn012345 prints sn012345 to the standard output, but here to the pipe

2. mailx sends a mail, with an attachment ('-a') of file Lab_seven, and

3. Subject: Lab seven to

4. surizal@metalab.uniten.edu.my
Don't forget to submit your lab sheet!

