
CSNB113: System
Administration

-
4th Topic: User

administration //
Authentication and Profiles

Objectives

Managing users
• Creating new user accounts
• User groups: function, setting up
• Privileged accounts
• Deleting users accounts
Authentication and Environment
• Setting up user environment
• Profiles

Creating new user accounts

The system needs to be aware of the new users:

• Real name

• User name *

• Password *

• Home directory

• Resources allocated to the user *
*: compulsory
Example from lab exercise 2:
useradd -m it098765 [-m creates home directory]
passwd it098765 [sets password for user it098765]

As long as the password is not set, the user cannot log on

Groups: Function, setting up

Often, on systems with many users, some groups of users
have similar functions in an organisation: student, staff,
administration, management, cleaners, etc.
Instead of setting permissions individually, it is possible to
allocate users belonging to a group, to a group of users on a
system. This makes it easier to administrate these groups of
users. On *nix, the groups on a system can be found in
/etc/group
By default, for a new user a new group will be created.
If you want to add a new user to an existing group, you
would use the option -g {group_name} to the command:
useradd -m -g admin it098765
adds the new user to the (user-)group admin.

Privileged Accounts

It is only logical, that there will be different levels of user
accounts. At least two levels are needed:

• System administrators

• Unprivileged users
We noticed this in lab 2, when the user account created, did not
have the permission to shutdown ('halt') the system.
The privileged account is the system administrator, called root on
*nix machines.
Since the root user has all privileges, it is very dangerous to use
the root account. One single command can erase / destroy the
whole installation, operating system, applications, all data.
Therefore it is recommended, to not use the root account by
default, but take the role of root for specific commands.

sudo
There are a number of terms for sudo, officially it is 'do as [another] user':
$ whoami
it12345
$ sudo -u it07777 whoami [-u {username} identifies the user]
it07777
(This of course works only when a user it07777 exists on the system.)
This shows how one user can execute a command (program) as another user;
or with the privilege of another user.
Without the -u, the program sudo executes the command as root.
Or:
Without the -u, sudo assumes you want to run the command as root:
$ sudo halt
is the same as
$ sudo -u root halt

Home Directories
For easy house-keeping, we usually put all user data into a specific directory:
/home
With two users, it07777 and it098765, there will be two subdirectories in /home:
/home/it07777/
/home/it098765/
When a user logs on, (s)he will find him-/herself in their home directory.
All personal files, data, and settings are there. It is the only place, where a user has the
permission to write data (except the system administrator changed the permissions).
It is easy to back up all user data by copying /home/ to the backup medium.
Also, this is a reason, why often /home is put on an extra partition:
If the installation breaks, the system administrator can easily re-install the system, make sure that
the partition /home/ is not formatted, and then all user settings and data are there, identical to
what they were before the breakage.
This also allows to store all user data on another medium, another machine, or even somewhere
else, over the network. This is called NFS (Network File System).

Environment

When a user is logged on, (s)he finds him-/herself in
their home directory, abbreviated with ~.
But also, (s)he has access (or no access) to some
resources, e.g. data, files, printer. When (s)he types a
command (like 'date'), this commands needs to be
interpreted and acted upon by a command interpreter,
by a shell. There are a number of different shells
available, like 'sh', 'ash', 'ksh', 'bash', 'csh', etc.
They all behave slightly different. You can change the
shell by typing the name of the shell.
$ echo $SHELL
will show the one that you are using currently.

Environment setup

Environment is the agglomeration of all specific
items for a specific user. Different users can have
different environments.

When creating a new user, the files in /etc/skel [for
skeleton] are copied to the home directory of the
new user. Files here are all dot-files, that means
they are invisible to the normal 'ls' [list] command.
Such files are called hidden files.

When a user is created, the default parameters
used can be seen/changed with 'useradd -D'.

Examples
$ useradd -D

GROUP=100

HOME=/home

INACTIVE=-1

EXPIRE=

SHELL=/bin/sh

SKEL=/etc/skel

CREATE_MAIL_SPOOL=no

$ ls -l /etc/skel/

total 0

$ ls -la /etc/skel/

-rw-r--r-- 1 root root 220 2010-04-19 10:15 .bash_logout

-rw-r--r-- 1 root root 3353 2010-08-11 04:47 .bashrc

-rw-r--r-- 1 root root 675 2010-04-19 10:15 .profile

$

Removing (Deleting) Users

Removing a user is somewhat easier: We need to remove
the user from the userbase, and then eventually

• delete the home directory

• delete the group containing the user – only if it is
empty without that user!

By default, the home-directory is not deleted:
$ userdel it07777
will leave the data of it07777 on the disk, under
/home/it07777
If one wanted to remove the home directory as well, it
would be:
$ userdel -r it07777

Permissions

(Before we continue, we must know about permissions!)
Each and every file in *nix, as well as each and every directory
has a set of permissions.
The 3 basic permissions are
r(ead)
w(rite)
(e)x(ecute)
And these 3 permissions are given out three times: to the
owner ('user')
group
world ('everyone', 'all')

Permissions - Example
-rwxr-xr-x 1 root daemon 22936 2010-06-11 15:24 /usr/bin/whoami

owner is allowed to r,w,x

group is allowed to r,x

world is allowed to r,x

It is quite obvious, that only the owner is allowed to write, that is
delete, change, edit the program.

It is also quite obvious that everyone is allowed to execute, that is
run the program. (You yourself have already used it, and you ran it!)

The other details are size, timestamp of creation or modification,
and name.

ow
ne
r

gr
ou
p

w
or
ld

ow
ne
r

gr
ou
p

Authentication

When a user logs on, (s)he must be authenticated:
It must be checked, whether

• username exists in the userbase

• password supplied is correct
That means, both must be stored. Since there is no secret
in the username, everyone can view the username, and
some details of the user. Since the password must be
very secret, only root can be allowed to see the password.
There are two files that contain the user data:
/etc/passwd contains the 'public' data
/etc/shadow contains mainly the passwords (as hashes,
so that they are unreadable)

References
• Textbook, p.239 - 253

• Textbook, p.70 – 71 "The Superuser: root"

• Textbook, p.328, Figure 14-1

•

	CSNB113: System Administration
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

