
CSNB113: System
Administration

-
5th Topic: Filesystem

Layout // Use and
Examples

File System Layout
The file system on *nix is rather complex / complicated. Fortunately, the users do
not need to know.

The advantage for the system administrator is, that there are defined locations
for almost each and everything.

• /home: all user data

• /etc: all configuration data

• /root: all data accessible for root, the system administrator, only

•
/proc: information about the running processes, and the kernel (Linux only)

• /dev: location for all devices, drives. Example: mouse, keyboard, graphics
adapter, hard disk, thumb drives, consoles, etc.

• /tmp: all rapidly changing information – none that is relevant for running the
system. It is rather a scrap-board or a temporary storage for the system.

File System Layout - simple

File System Layout - detail

Navigation - I
The navigation on these directories is done using the change directory command ('cd').
cd is very versatile:
cd alone sends each user back to his/her home directory
cd / sends the user to the root-directory of the filesystem
cd .. changes to the upper directory:
$ pwd

/home/users/udippel

$ cd ..

$ pwd

/home/users

$ cd ..

$ pwd

/home

$ cd

$ pwd

/home/users/udippel

$ cd /

$ pwd

/

$

Navigation - II
cd is very versatile:
It is possible to 'climb' one or more up, and then one or more down:
$ pwd

/home/users/udippel

$ cd ../../ftp/pub/ubuntu/

$ pwd

/home/ftp/pub/ubuntu

$

The term here is relative path, because you start from where you happen to be, and ../ gets
you into a directory higher.

$ pwd

/home/users/udippel

$ cd /home/ftp/pub/ubuntu/

$ pwd

/home/ftp/pub/ubuntu

$

This here is using the abolute path, because you start 'absolutely', from '/'; due to the first
slash.

Navigation - II
cd is very versatile:
It is possible to 'climb' one or more up, and then one or more down:
$ pwd

/home/users/udippel

$ cd ../../ftp/pub/ubuntu/

$ pwd

/home/ftp/pub/ubuntu

$

The term here is relative path, because you start from where you happen to be, and ../ gets
you into a directory higher.

$ pwd

/home/users/udippel

$ cd /home/ftp/pub/ubuntu/

$ pwd

/home/ftp/pub/ubuntu

$

This here is using the abolute path, because you start 'absolutely', from '/'; due to the first
slash.

Navigation - III
To test the understanding:
$ pwd

/home/users/udippel

$ cd /etc

$ pwd

[???]

$ pwd

/home/users/udippel

$ cd etc

$ pwd

[???]

... and if the directory does not yet exist? Then we have to create it:
mkdir [make directory]

And how can we search or find a file?

Find - Locate
The command 'find' is very helpful, and allows all sorts of options: searching files according to name, date,
permissions, modification time, last access time, if it is a regular file or a directory, etc.
The disadvantage is the syntax, which is complex for all these. Also, when you have a lot of files, it takes a
long time, because all files need to be accessed (similar to the 'Search' on Windows).

Another method is 'locate'. This is a search in a database for the name or a part of the name. This is very fast,
but it only searches the database. A file created more recently will not show. So you need to update the
database (command: 'updatedb').

We start searching a file that does NOT exist on the system: find_me_not
$ find -name find_me_not [file is not found – to be expected]
$ locate find_me_not [file is not found – to be expected]
$ touch find_me_not [touch creates an empty file here]
$ find -name find_me_not

./find_me_not [file is found – to be expected]
$ locate find_me_not [file is not found – to be expected as the database has not been updated]
$ sudo updatedb [updating the database of files and directories]
$ locate find_me_not

/home/udippel/find_me_not [file is found – to be expected now, after the database update]
$

Wait for the lab exercise or try out yourself, how much faster locate is.

Permissions - Changing
The list of files and directories comes with ls, or ls -l for the long list, with many details.
We can see the permissions; we can see who has which rights on a file.
We have almost all tools needed for basic system administration. We still need to learn how to change these items.

-rwxr-xr-x 1 root daemon 22936 2010-06-11 15:24 /usr/bin/whoami
-4214-14-1
- 7 5 5
The permission(s) of this file are 755.
Wanting to give these permissions to a file, the command is:
$ chmod 755 /usr/bin/whoami

The owner of the file is root, it belongs to group deamon.
To change ownership:
$ chown fred /usr/bin/whoami

changes the ownership to user fred

To change the group:
$ chgrp student /usr/bin/whoami

makes the file belong to group student

Removing, Deleting

The easier part is getting rid of files and directories:
$ rm /usr/bin/whoami

removes the file /usr/bin/whoami in directory /usr/bin/, or any
other file of your liking – as long as you have the 'w' permission
for it!
$ rmdir /usr/bin/

in turn removes directory /usr/bin/. There is not much of danger
using this command, because it will not remove anything, as long
as there is at least one file in that directory. rmdir only removes
totally empty directories.
These commands are 'boring', because in order to delete a
directory 'demo' containing 21 files, one needs to delete these 21
files, then cd .., followed by rmdir demo.
This works, but is too cumbersome.

Globbing

Globbing is the way to 'summarise' a number of files
according to their names. This is being done by
expanding wildcards.

Task Example Unix Windows
Powershell

Match one
character

?at matches cat, bat, mat, Fat ? ?

Match any
number of
characters

Uni* matches Unity, Uniten,
Uni – but not unity

* *

Match specific
characters

[d,F] matches demo, Fish –
but not Demo, fish, cat

[chars] [chars]

Escape Uniten\? matches Uniten?
only

\ `

Globbing - Examples
$ ls -l

 -rw-rw-r-- 1 bozo bozo 0 Aug 6 18:42 a.1

 -rw-rw-r-- 1 bozo bozo 0 Aug 6 18:42 b.1

 -rw-rw-r-- 1 bozo bozo 0 Aug 6 18:42 c.1

 -rw-rw-r-- 1 bozo bozo 466 Aug 6 17:48 t2.sh

 -rw-rw-r-- 1 bozo bozo 758 Jul 30 09:02 test1.txt

$ ls -l t?.sh

 -rw-rw-r-- 1 bozo bozo 466 Aug 6 17:48 t2.sh

$ ls -l [ab]*

 -rw-rw-r-- 1 bozo bozo 0 Aug 6 18:42 a.1

 -rw-rw-r-- 1 bozo bozo 0 Aug 6 18:42 b.1

$ ls -l [a-c]*

 -rw-rw-r-- 1 bozo bozo 0 Aug 6 18:42 a.1

 -rw-rw-r-- 1 bozo bozo 0 Aug 6 18:42 b.1

 -rw-rw-r-- 1 bozo bozo 0 Aug 6 18:42 c.1

$ ls -l *

 -rw-rw-r-- 1 bozo bozo 0 Aug 6 18:42 a.1

 -rw-rw-r-- 1 bozo bozo 0 Aug 6 18:42 b.1

 -rw-rw-r-- 1 bozo bozo 0 Aug 6 18:42 c.1

 -rw-rw-r-- 1 bozo bozo 466 Aug 6 17:48 t2.sh

 -rw-rw-r-- 1 bozo bozo 758 Jul 30 09:02 test1.txt

Removing of bulk data
To remove all files from the directory /usr/bin:
$ rm /usr/bin/*

removes all files (* matches all files) in /usr/bin/
Then,
$ rmdir /usr/bin/

in turn removes directory /usr/bin/.
This does not work for
$ rm /usr/*

Why? This command removes all files in /usr/; but not the
directories, like /usr/bin/. So you would have to recurse into all the
subdirectories under /usr/ and first delete all the files (see above,
for /usr/bin), and then the directories.
This is still cumbersome, therefore we have an option for recursion:

Removing of all data
$ rm -R /usr/*

This will recurse into all sub-directories under /usr/, and the sub-sub-
directories ..., delete all files there, then delete the subdirectories, finally
delete all files in /usr/, and at last delete the directory /usr/ itself.
If this command finds reasons to double-check, and asks you questions, you
have to type 'y'. Boring? Option -f ('force') stops 'quarreling' with you:
$ rm -Rf /usr/*

With this command, all and anything under /usr/ is gone, irrevocably.
In case you happen to be in '/' the root directory, though you think you are in
some subdirectory,
$ rm -Rf *

Simply removes all and everything you have on your drives, from all
partitions. 100%. Success guaranteed. Happy new install. Hopefully, you had
made a backup for your data!?

References
• http://en.wikipedia.org/wiki/Glob_(programming)

• http://www.faqs.org/docs/abs/HTML/globbingref.html

• Textbook, p.697 – 702 "Globbing With Wildcards"

• Textbook, p.328, "WHAT'S IN A NAME?"

•

	CSNB113: System Administration
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

