
CSNB113: System 
Administration

-
7th Topic: 

Files … Files … Files



"Everything is a file"
… at least in the world of *nix. 
A file is a file.
A directory is – kind of – a file (with a 'd' in front of it).
A process is a file (under /proc/).
A device is a file (under /dev).
A link is a file
A mass storage devices (e.g. hard-drive, CD-ROM, USB Key) is a file
Inter-process communication:

•
A pipe is a file

•
shared memory is a file

•
A socket is a file

A Network connection is a file
An interactive terminal is a file
Almost all other devices (e,g, Printers, Graphic Card) are files …

Actually, in the beginning it was: "everything is a stream of Bytes"



Commands for files 
ls gives a list of filenames in the current directory

mv rename a file: mv oldfile newfile or mv oldfile newdir 

cp copy a file: cp oldfile newfile or cp oldfile newdir 

chmod change permissions; see "File Attributes" for examples  

rm remove a file

cd change directories

lpr print a file: lpr -P printer-name file 

pwd "print" working directory; returns the current directory  

http://www.uic.edu/depts/accc/software/unixgeneral/unix101.html%22%20%5Cl%20%22ileatts


Commands for files 
quota to see how much disk space you've used  

mkdir create a new directory

rmdir remove a directory

compress compress a file into one with a .Z extension; uncompress reverses 
the process

tar package a group of files into one file for moving or archiving; also 
extracts tar files



Archives of files

tar 
stands for tape archive. It was a very early archiving product 
for *nix. It allows to create an archive of many files, including 
directories. It also stores the paths of all files, and it stores 
the permissions of all files. 
It allows to create an archive, and to extract an archive. It 
also allows to select files /directories to be archived and to 
select files / directories to be extracted from the archive. 
It allows to compress an archive with a number of 
compression algorithms to make the archive smaller.



Basic tar
-c create an archive

-v verbose ("containing many words")
-f filename

-t list files in an archive
-x extract files from an archive

-z compress / uncompress with gzip
-j compress / uncompress with bzip2
-p preserve permissions (default for superuser)

-P maintains leading '/'-s (Absolute Path)

tar -c -v -f demo.tar *.txt
tar -t -v -f demo.tar t*.txt

tar -x -v -f demo.tar t*.txt



Basic tar – example I

$ ls

a.txt  test  test.txt

$ tar -c -v -f demo.tar *.txt

$ tar -t -v -f demo.tar t*.txt

$ tar -x -v -f demo.tar t*.txt

$



Basic tar - example
$ tar -c -v -f demo.tar /etc/passwd

tar: Removing leading `/' from member names

/etc/passwd

$ tar -t -v -f demo.tar 

-rw-r--r-- root/root      1933 2010-11-25 11:33 etc/passwd

$ tar -c -v -f demo.tar -P /etc/passwd

/etc/passwd

$ tar -x -v -f demo.tar 

tar: Removing leading `/' from member names

/etc/passwd

$ ls

a.txt  demo.tar  etc  test  test.txt

$ tar -x -v -f demo.tar -P

/etc/passwd

tar: /etc/passwd: Cannot open: File exists

tar: Exiting with failure status due to previous errors

$ 



Basic tar - example
$ tar -c -v -f demo.tar /etc/passwd

tar: Removing leading `/' from member names

/etc/passwd

$ tar -t -v -f demo.tar 

-rw-r--r-- root/root      1933 2010-11-25 11:33 etc/passwd

$ tar -c -v -f demo.tar -P /etc/passwd

/etc/passwd

$ tar -x -v -f demo.tar 

tar: Removing leading `/' from member names

/etc/passwd

$ ls

a.txt  demo.tar  etc  test  test.txt

$ tar -x -v -f demo.tar -P

/etc/passwd

tar: /etc/passwd: Cannot open: File exists

tar: Exiting with failure status due to previous errors

$ 



tar as backup
tar
is a useful backup tool for files and directories, and very frequently used. 
One doesn't want to backup all, all the time, rather depending on the 
necessity and the changes:
/home containing user files: frequent changes
tar -c -v -p -f home.tar /home

This can be done regularly, and then, if needed, it can be rolled-back
cd /

tar -x -v -p -f home.tar

While tar allows to be very selective with files and directories, it is prone to 
mistakes. Often one wants to back up a whole partition in a single go, 
without missing anything, without even a chance to lose anything.



dump
This is the tool to simply backup a whole partition. (Another reason to create lots of them at 
install.)
sudo fdisk -l

shows us all the partitions on our drive:
$ sudo fdisk -l

   Device Boot      Start         End      Blocks   Id  System

/dev/sda1   *           1       29165   234259456   83  Linux

/dev/sda2           29165       30402     9936897    5  Extended

/dev/sda5           29165       30402     9936896   82  Linux swap / Solaris

dump -0u -f part_1.dmp /dev/sda1

creates a file, part_1.dmp, containing all and everything on the first partition one (/dev/sda1). 
So the whole, complete, partition will be stored as such in a (large) file. If the partition size is 40 
GB, but only 2.2 GB are used, the resulting file part_1.dmp will only be 2.2 GB in size.
Still, this is large, and will take some time. Therefore, it is possible to make
-0:a complete backup ("full backup") 
-1:an incremental backup
The first run will make a 1:1 copy of the partition and save it as file; the second run, with option 
-1, will only save those files that have changed since the last, complete, backup



mount – associating files 
When you have more than one partition, the behaviour in Windows and 
*nix is different:
In Windows, you get another drive. The first drive, usually C:, contains 

the system files. If you have a second partition, it will show as D:, and if 
you add a CDROM, it could show as E: or M:. 
Inserting a thumb drive could get you a new drive F:.

In *nix, when a second partition is available, or a CD is inserted, or a 
thumb drive plugged in, all these file systems need to be associated to 
a location within the existing filesystem; somewhere under '/'. 

The term is: It is associated with a specific location in the file system 
hierarchy. This point is called the mount point.
The command for mounting is mount, for un-mounting it is umount.
The command without option or parameter displays the currently mounted 
file systems.



mount - Example
At installation, you created a number of partitions: /boot, /, /home.

When the system is booted, these partitions are automatically 
mounted: When you log on, you are in your home directory, 
under /home.

$ mount
/dev/sda3 on / …

/dev/sda1 on /boot …
/dev/sda5 on /home …

This means, that these partitions are mounted automatically at 
boot. How does the system know about this? The information about 
the system partitions are written into file /etc/fstab



vi – the editor for files
There are plenty of editors, from Windows' Notepad to Office, for GUI as well as 
command line. 
Though one is unique: vi. It is unique, because it is ubiquitous. 
This means it is available almost everywhere and anywhere on any Linux, Unix, Solaris, 
*BSD, OSX. But it also is available on most embedded systems. 
Even on ADSL-modems and wireless access points one can often find it. It is on routers, 
firewalls, and almost always on basic installs. It is also unique in the way it handles 
user input. Actually, it has a very strange way to handle user input. It can be used 
without mouse, even without cursor keys. 
On the other hand, it is very powerful, and some have written whole books with it.
In a nutshell: It has two modes:
1. Command mode. Anything the user types is considered a control / command. There 
are keys strokes for navigation, up, down, to the end of the line, beginning of the 
document, replacing some string (words)
2. Input mode. Anything the user types is inserted into the document
One changes from command mode to input mode by pressing 'i' (nsert)
One changes from input to command mode by pressing 'Esc' (ape)



References
• Textbook, p. 691 – 694, Keeping track of your disk space

• Textbook, p. 715 – 729, Working with files

• Textbook, p. 568 – 581

•


	CSNB113: System Administration
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

