
CSNB113: System
Administration

-
8th Topic:

Shell Scripts –
Programming I

The prompt is a prompt is a
prompt … and a program input

It is possible to write and run a program directly on the command prompt!

$ date

Mon Jan 17 10:19:28 MYT 2011

$ echo "I am fine on"

I am fine on

$ echo "I am fine on: "

I am fine on:

$ echo "I am fine on: "`date`

I am fine on: Mon Jan 17 10:22:53 MYT 2011

$

'echo' is a command and instructs the shell to print whatever follows the 'echo'
The backward apostrophe (`) executes (runs) a(nother) command

Sequencing of commands
it is possible to run a multitude of commands sequentially. This is done by using a semicolon
between the commands:

$ echo "I am fine on: "`date`; ls *.pdf; whoami

I am fine on: Mon Jan 17 10:31:02 MYT 2011

System_Admini_Lab1.pdf System_Admini_Lab3.pdf System_Admini_Lab5.pdf

System_Admini_Lab2.pdf System_Admini_Lab4.pdf System_Admini_Lab6.pdf

udippel

$

This can be beautified:
$ echo "I am fine on: "`date`; echo; ls *.pdf; echo; echo -n "I am "; whoami

I am fine on: Mon Jan 17 10:37:15 MYT 2011

System_Admini_Lab1.pdf System_Admini_Lab3.pdf System_Admini_Lab5.pdf

System_Admini_Lab2.pdf System_Admini_Lab4.pdf System_Admini_Lab6.pdf

I am udippel

$

Beautified??
$ echo "I am fine on: "`date`; echo; ls *.pdf; echo; echo -n "I am "; whoami

The output was more beautiful (and readable), but the input is not.
Plus, if one wants to run it again, it needs to be retyped.
It makes a lot of sense, to put
1 - the lines into a file
2 - make the file executable (the 'x' at permissions!)
3 - run the file (using ./ - dotslash)

$ vi my_first_program

$ chmod 755 my_first_program

$./ my_first_program

#!/bin/bash
echo "I am fine on: "`date`
echo
ls *.pdf
echo
echo -n "I am "; whoami

Beautified!

The lines starting with '#' are comments
It is also possible to add a comment at the end of a line
Only in the first line, the '#' is not really a comment. It is the
indication, which command interpreter should be used for
this program. In this case, it is Bash (and found in /bin/bash on
the system.)

#!/bin/bash
this is my first program
written in January 2011

echo "I am fine on: "`date`
echo # creates a new line
ls *.pdf # list all PDFs
echo # bla-bla-bla-lah!
echo -n "I am "; whoami
done!

Available!?
From now on, this file is available as executable program in your system.
Is it?

$./my_first_program

I am fine on: Mon Jan 17 11:44:53 SGT 2011

yahoo.pdf

I am udippel

$ mkdir newdir

$ cd newdir/

$./my_first_program

bash: ./my_first_program: No such file or directory

$ ls -l

$

Why??

Availability
$./my_first_program

bash: ./my_first_program: No such file or directory

$ whoami

udippel

$

$ which whoami

/usr/bin/whoami

$ whoami| grep di

udippel

$ which grep

/bin/grep

$ which my_first_program

$

How does it know some, but the other not? That has to make with the environment; the 'path':
$ echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games

$

Availability
$./my_first_program

bash: ./my_first_program: No such file or directory

$ whoami

udippel

$

$ which whoami

/usr/bin/whoami

$ whoami| grep di

udippel

$ which grep

/bin/grep

$ which my_first_program

$

How does it know some, but the other not? That has to make with the environment; the 'path':
$ echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games

$

Available!
Make your new program available system-wide:

$ sudo cp my_first_program /usr/local/bin/

$

$ which my_first_program

/usr/local/bin/my_first_program

$ my_first_program

I am fine on: Mon Jan 17 12:26:22 SGT 2011

yahoo.pdf

I am udippel

$

This example shows the relevancy of the 'path'. The path is an environment variable, that
the system administrator can set or change.

Shell Variables
It is good convention and practice, but not compulsory, to use ALL UPPERCASE shell variables.

The user can easily define these variables on the command prompt.
To substitute a variable, it must be preceded by a '$' (Dollar sign)

$ SLOGAN="Uniten generates professionals"

$ echo $SLOGAN

Uniten generates professionals

$ echo SLOGAN

SLOGAN

$

Though
$ SLOGAN=Uniten generates professionals

might also work, it is good practice to enclose strings with (double) quotes, as above

A shell variable must not have a blank in its name. Use underscore ('_') instead:
$ UNITEN_SLOGAN="Uniten generates professionals"

Loops
Loops can be written with 'for' or 'while'.
Here are two examples:

1. for – loop:

#!/bin/bash

for i in 1 2 3 4 5

do

 echo "This is round $i"

done

2. while – loop:

#!/bin/bash

TEST="no"

while ["$TEST" != "yes"];

do

 read TEST

done

Decision
Decisions ('selection') is usually implemented with if … fi.
Here are two examples:

1. for – loop:

#!/bin/bash

TEST=4

if [$TEST -lt 5]; then

 echo "less than five"

fi

#!/bin/bash

TEST=6

if [$TEST -lt 5]; then

 echo "less than five"

else

 echo "five or more"

fi

Parameter
It is possible to parse arguments when calling a shell program.
Uuuh? What's that?

Look at this example. The name of the program is just_an_echo:

#/bin/ksh

echo "arguments for $0 was $1 $2 $3 $4"

Shell variable $0 is the program name
Shell variables $1 to $9 are the parameters following the program call:

$./just_an_echo A B C D

arguments for just_an_echo was A B C D

$./just_an_echo A B C D E F

arguments for just_an_echo was A B C D

$ cp just_an_echo another_name

$./another_name A B C D E F

arguments for another_name was A B C D

$

Parameter
It is possible to pass arguments when calling a shell program.
Uuuh? What's that?

Look at this example. The name of the program is just_an_echo:

#/bin/ksh

echo "arguments for $0 was $1 $2 $3 $4"

Shell variable $0 is the program name
Shell variables $1 to $9 are the parameters following the program call:

$./just_an_echo A B C D

arguments for just_an_echo was A B C D

$./just_an_echo A B C D E F

arguments for just_an_echo was A B C D

$ cp just_an_echo another_name

$./another_name A B C D E F

arguments for another_name was A B C D

$

References
• http://www.google.com.my/

search for 'shell script'

•

	CSNB113: System Administration
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

