
CSNB113: System
Administration

-
9th Topic:

Shell Scripts –
Programming II

Parameter: $# and $?
It is possible to pass arguments when calling a shell program.

Sometimes, we need - or expect – a specific number of arguments. If not, the program wouldn't work. There is a
convenient way to check the number of arguments; with $#:

#!/bin/bash

if [$# -ne 1]; then

 echo "Usage - $0 single_argument"

 exit 9

fi

This program introduced yet another feature: exit

'exit' allows us to intercept if the previous program ran successfully, if it went wrong, and where it went wrong. The
number following the word 'exit' is passed to the shell, and can be used for another program, or just displayed.

In the example above, whenever you have a number of arguments not equal to 1, 9 will be passed to the calling routine.

$./exito AD

$ echo $?

0

$./exito

Usage - ./exito single_argument

$ echo $?

9

$

List Constructors - 0
A program will always output an exit code, if you write it or not.
With exit codes of your choice, you can control what happens with the next command. There are
many uses for system administration: when one command executes correctly, the subsequent
one can be run as well. When the first command does not run, the next command does not need
to run. Example: creating a user account. If it fails, there is no need to set a password for it!

#!/bin/bash
if [$# -ne 1]; then
 echo "Usage - $0 single_argument"
 exit 9
fi

$./exito && date
Usage - ./exito single_argument
$./exito AD && date
Fri Jan 21 16:04:55 MYT 2011
$

Huuh, what happened here??

List Constructors - I
The && are actually list constructors. You can use them to concatenate a list of commands, and at the
same time do a compound comparison.
This means, instead of using the semicolon between commands, which is a list constructor as we saw in
the last lecture, we can use a combined function that constructs the list, PLUS stops execution when it
compares the exit codes:

#!/bin/bash

if [$# -ne 1]; then

 echo "Usage - $0 single_argument"

 exit 9

fi

$./exito ; date

Usage - ./exito single_argument

Fri Jan 21 16:21:05 MYT 2011

$./exito && date

Usage - ./exito single_argument

$

Understand??

Default exit codes
There are some default exit codes that the programs produce; irrespective if the programmer has
inserted them or not. The programmer may insert additional, or other, codes if (s)he wanted.

$ abcdefgh
abcdefgh: command not found
$ echo $?
127
$ date ; echo $?
Fri Jan 21 17:36:40 MYT 2011
0
$

Exit Value Exit Status
0 (Zero) Success
Non-zero Failure
2 Incorrect usage
127 Command Not found
126 Not an executable

Windows, too!
Windows also creates exit codes. It is a tad more difficult to intercept them,
though:

:begin
@echo off
%1
if not errorlevel 1 goto end
echo ERROR !
:end
echo %errorlevel%
@echo on

This is a very basic wrapper for any Windows program. Name it demo.bat and
pass the program name foo as parameter:
C:\........\> demo.bat foo

and it will return an 'exit' or 'return' value. If foo is not valid, it will return 9009; e.g.

Error handling
System Administration is a lot about working with files and directories. If they don't exist, or you mistype
them, the resulting action is undefined.
Scripts, that is programs, need proper error-handling!

Check this example of script errhand, that contains some basic error handling:

$./errhand

Usage: ./errhand filename

$./errhand uwe one

Usage: ./errhand filename

$./errhand uwe

Sorry, file uwe does not exist

$./errhand testo

#!/bin/bash

TEST="no"

while ["$TEST" != "yes"];

do

 read TEST

done

$

Error handling
System Administration is a lot about working with files and directories. If they don't exist, or you mistype
them, the resulting action is undefined.
Scripts, that is programs, need proper error-handling!

Check this example of script errhand, that contains some basic error handling:

$./errhand

Usage: ./errhand filename

$./errhand uwe one

Usage: ./errhand filename

$./errhand uwe

Sorry, file uwe does not exist

$./errhand testo

#!/bin/bash

TEST="no"

while ["$TEST" != "yes"];

do

 read TEST

done

$

Checking the number of arguments

Checking if the file exists

Error handling - code
Check this example of script errhand, that contains some basic error handling:

#!/bin/bash

if [$# -ne 1]; then

 echo "Usage: $0 filename"

 exit 1

fi

if [-f $1]; then

 cat $1

else

 echo "Sorry, file $1 does not exist"

fi

The first had been done some slides before. The second part tests the file: '-f' stands for 'file
exists'.

There are many other possible checks for files and directories.

File and Directory checks
Operator Tests Whether

-e File exists

-f File is a regular file

-d File is a directory

-s File is not zero size

-r File has read permission

-w File has write permission

-x File has execute permission

-O You own the file

-G Group id of file same as yours

Handling files with scripts - 0

How to read file names, handle file names? How to check files?
This is the sample directory, consisting of 7 files:

$ ls -l

-rw-r--r-- 1 admini wheel 10240 2011-01-10 18:14 demo.tar

-rw-r--r-- 1 admini wheel 0 2011-01-24 14:31 empty_file

-rwxr-xr-x 1 admini wheel 164 2011-01-24 11:40 errhand

drwxr-xr-x 2 admini wheel 4096 2011-01-10 18:18 etc

-rwxr-xr-x 1 admini wheel 215 2011-01-24 14:29 file_handler

-rw-r--r-- 1 admini wheel 77 2011-01-17 16:21 testo

-rw-r--r-- 1 admini wheel 0 2011-01-10 18:05 test.txt

There are 7 files, there is one directory, there are two files without content.
The task of the script is, to identify the files with content, the empty files, as well as
any file that actually is a directory.
Therefore, we create a 'do … done' loop, looping through all files (file names) that we
have to obtain first.

Handling files with scripts - I

This is sample code to show how to get the list of files into our program (globbing anyone?):

#!/bin/bash

first demo of handling file by file

for FILE in *

do

if [-s $FILE]; then

 echo "$FILE has content"

else

 echo "$FILE is empty"

fi

checking if it is a directory

if [-d $FILE]; then

 echo "$FILE is a directory"

fi

done

$

Once the files (file names) are known, we can do some tests on the files

Handling files with scripts - II

Here is the output of the program, run in the directory and on the files as above:

$./file_handler

demo.tar has content

empty_file is empty

errhand has content

etc has content

etc is a directory

file_handler has content

testo has content

test.txt is empty

$

This works, but is not really nice:

➔ etc shows twice

➔ we don't see how many files there are in that directory altogether

➔ we don't know about executable files, the user cannot select what (s)he wants to see
(and more)

References
• http://www.google.com.my/

search for 'shell script'

•

	CSNB113: System Administration
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

