

UNIVERSITI TENAGA NASIONAL

College of Information Technology

BACHELOR OF INFORMATION TECHNOLOGY (HONS.) BACHELOR OF COMPUTER SCIENCE (HONS.)

FINAL EXAMINATION
SEMESTER II 2012/2013
DISCRETE STRUCTURES

(CSNB143)

JANUARY 2013

Time allowed: 2 hours 30 minutes + 10 minutes for reading

INSTRUCTIONS TO CANDIDATES

- 1. There are **TWO (2) SECTIONS** to this paper: Section A and Section B
- 2. Answer **ALL** questions in **Section A** and **Section B**.
- 3. The total marks for this exam is 100 marks.
- 4. Answer **ALL** the questions in the answer booklet provided.
- 5. You are allowed to use non-programmable calculators during the exam.

DO NOT OPEN THIS QUESTION PAPER UNTIL YOU ARE INSTRUCTED TO DO SO

THIS QUESTION PAPER CONSISTS OF 8 PRINTED PAGES INCLUDING THIS PAGE

SECTION A: SHORT ANSWER QUESTIONS (10 QUESTIONS, 30 MARKS)

Instruction: Answer ALL of the following questions.

Question 1

- (a) Let $A = \{ab, bb, bc\}$. In each of the following parts, indicate whether the string belongs to A^* . (Note: Answer **YES** or **NO**)
 - (i) ababbbbbbc

[1 mark]

(ii) bbabbbbcbbc

[1 mark]

- (b) Let $A = \{1, 2, 3, \{4, 5, 6\}\}$. Identify each of the following as **TRUE** or **FALSE**.
 - (i) $\{4, 5, 6\} \subseteq A$.

[1 mark]

(ii) $\{3\} \in A$

[1 mark]

(iii) $\{1, 2\} \subseteq A$

[1 mark]

Question 2

Let p, q, and r be the following statements:

p: I will study Discrete Structures.

q: I will go for dinner.

r: I am happy.

Write the statements below in terms of p, q, r, and logical connectives.

(a) If I am not happy, then I will go for dinner.

[2 marks]

(b) I am happy only if I will not study Discrete Structures and I will go for dinner.

[2 marks]

Let the Universal set $U = \{a, b, c, d, e, f, g, h, i, j\}$, and let A and B be two sets where $A = \{a, b, c, d, f, g, i\}$ and $B = \{a, c, f, g, h, i, j\}$. Compute the following:

(a) A - B

[1 mark]

(b) $B \oplus A$

[1 mark]

Question 4

(a) Let $A = \{a, b, c\}$. Find P(A).

[2 marks]

(b) What is |P(A)|?

[1 mark]

Question 5

Let $A = \{1, 2, 3, 4\}$ and $R = \{(1, 1), (1, 2), (2, 3), (3, 2), (3, 3), (4, 2)\}.$

(a) Find the symmetric closure of R.

[1 mark]

(b) Find the *transitive closure* of R.

[3 marks]

Question 6

Determine if the relation $R = \{(1, 7), (2, 3), (2, 6), (4, 1), (4, 2), (4, 5), (5, 3)\}$ is a tree on the set $A = \{1, 2, 3, 4, 5, 6, 7\}$. If it is a tree, what is the root? If it is not a tree, then make the least number of changes necessary to make it a tree and give the root.

[4 marks]

Write a formula for the n^{th} term of the following sequence. Identify your formula as recursive or explicit.

[2 marks]

Question 8

In a psychological experiment, a person must arrange a square, a cube, a triangle and a pentagon in a row. How many different arrangements are possible?

[1 mark]

Question 9

Draw a picture of the graph $G = (V, E, \gamma)$ where $V = \{a, b, c, d, e\}$, $E = \{e_1, e_2, e_3, e_4, e_5, e_6\}$, and $\gamma(e_1) = \gamma(e_5) = \{a, c\}$, $\gamma(e_2) = \{a, d\}$, $\gamma(e_3) = \{e, c\}$, $\gamma(e_4) = \{b, c\}$ and $\gamma(e_6) = \{e, d\}$.

[2 marks]

Question 10

For the following graphs, tell whether the graph has an Euler circuit, an Euler path but no Euler circuit or neither. Give reasons for your choice.

[1.5 marks]

(b)

[1.5 marks]

SECTION B: PROBLEM-SOLVING (10 QUESTIONS, 70 MARKS)

Instruction: Answer ALL of the following questions.

Question 1

(a) Convert the *Hexadecimal* number AC2₁₆ to its equivalent *Decimal* number.

[2 marks]

(b) Convert the *Octal* number **52**₈ to its equivalent *Binary* number.

[2 marks]

(c) Evaluate the *Octal addition* $(35_8 + 64_8)$.

[2 marks]

Question 2

Let **A** and **B** be two matrices as given below. Compute **AB**.

[6 marks]

Question 3

Prove that $n < 2^n$ for all $n \ge 2$ using mathematical induction.

[6 marks]

Question 4

Four fair six-sided dice are tossed and the numbers showing on top are recorded.

(a) How many different record sequences are possible?

[2 marks]

(b) How many of the records in part (a) contain **EXACTLY** one *three*?

[3 marks]

(c) How many of the records in part (a) contain **EXACTLY** three *fours*?

[3 marks]

A committee of 9 people with one person designated as chair of the committee is to be formed. How many different committees of this type can be chosen from a group of 12 people?

[5 marks]

Question 6

(a) Let $A = \{1, 2, 3, 4, 5\}$. Determine whether the relation R with matrix \mathbf{M}_R as given below is *symmetric*, *asymmetric*, or *antisymmetric*. Briefly *explain* your answers.

[6 marks]

(b) Let
$$A = \{1, 2, 3, 4\}$$
. Let
$$R = \{(1, 1), (1, 2), (2, 3), (2, 4), (3, 4), (4, 1), (4, 2), (4, 3)\}$$
$$S = \{(1, 1), (1, 4), (2, 3), (2, 4), (3, 1), (3, 3), (4, 4)\}.$$

Compute or find $R \circ S$.

[4 marks]

Question 7

Show or prove that if $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cup C$.

[4 marks]

Let $A = \{1, 2, 3, 4\}$ and R be a relation on A with matrix \mathbf{M}_R as given below:

$$\mathbf{M}_R = \begin{array}{ccccc} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{array}$$

(a) Prove that *R* is a *partial order*.

[4 marks]

(b) Draw the *Hasse* diagram of R.

[4 marks]

Question 9

Let $A = B = C = \mathbb{R}$ (Real Numbers), and let $f: A \to B$, $g: B \to C$ be defined as follows:

f(a) = a + 3, and $g(b) = b^2 + 1$. Find:

(a)
$$(g \circ f)(-2)$$

[3 marks]

(b)
$$(g \circ g)(x)$$

[3 marks]

Question 10

Study the graph in Figure 1 and answer the questions that follow.

Figure 1

Page 7 of 8

(a) Find the degree of each vertex in the graph.

[2 marks]

(b) Identify an Euler's cycle/path in the graph.

[3 marks]

(c) Identify a Hamilton's cycle/path in the graph.

[3 marks]

(d) Each edge in the graph was then given a weight as shown in Figure 2 below:

Figure 2

Find the Minimal Spanning Tree for the weighted graph using Prim's algorithm starting with vertex E.

[3 marks]

---End of Questions---