

UNIVERSITI TENAGA NASIONAL

College of Information Technology

BACHELOR OF COMPUTER SCIENCE (HONS) BACHELOR OF INFORMATION TECHNOLOGY (HONS)

FINAL EXAMINATION SEMESTER I 2015/2016

DISCRETE STRUCTURES (CSNB143)

September 2015

Time allowed: 3 hours + 10 minutes for reading

INSTRUCTIONS TO CANDIDATES.

- 1. The total marks for this exam is 100 marks.
- 2. There are TWO (2) SECTIONS in this paper: Section A and Section B
- 3. Answer **ALL** questions in the answer booklet provided.

DO NOT OPEN THIS QUESTION PAPER UNTIL YOU ARE INSTRUCTED TO DO SO.

THIS QUESTION PAPER CONSISTS OF 7 PRINTED PAGES INCLUDING THIS PAGE.

SECTION A: SHORT ANSWERS (5 QUESTIONS, 30 MARKS)

<u>Instruction</u>: Answer ALL the questions. You need to show all the required working steps to show how you arrive at the solutions.

Question 1

Given a Venn Diagram as in Figure 1, consist of **THREE** (3) disjoint sets X, Y and Z. The different areas in the Venn Diagram are labelled with A, B, C, D, E, F, G and H. Answer the following questions by **LISTING** the correct areas.

Figure 1

The area for

- (a) $X \cap Y$
- (b) X-Z
- (c) $(A \cap C)'$
- (d) Y'
- (e) $U (X \cap Y)$

[5 marks]

Question 2

Consider a matrix below and answer either YES or NO:

$$\mathbf{M}_{R} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}$$

Is this matrix a

- (a) square matrix?
- (b) diagonal matrix?
- (c) identity matrix?
- (d) boolean matrix?
- (e) zero matrix?

[5 marks]

Question 3

A student was given 15 questions in a test. Find the number of choices if he must answer 10 questions:

(a) from 15 questions.

[1 mark]

(b) where the first **FIVE** (5) questions are compulsory.

[2 marks]

(c) where the first **FIVE** (5) questions are from Section A (question 1 to 8), and another **FIVE** (5) questions are from Section B (question 9 to 15).

[2 marks]

(d) where at least **SIX** (6) question are from Section A (question 1 to 8).

[4 marks]

Question 4

If there are 30 people in one room, by using Pigeonhole Principle, show that at least **FIVE (5)** people were born in the same day.

[3 marks]

Question 5

Determine whether statements $\sim (\mathbf{p} \wedge \mathbf{q})$ and $\sim \mathbf{p} \vee \sim \mathbf{q}$ are logically equivalent.

[8 marks]

SECTION B: STRUCTURAL QUESTIONS (6 QUESTIONS, 70 MARKS)

<u>Instruction</u>: Answer ALL the questions. You need to show all the required working steps to show how you arrive at the solutions.

Question 1

Using mathematical induction, prove that for $\forall n \geq 1$,

$$2(3^0) + 2(3^1) + 2(3^2) + \dots + 2(3^{n-1}) = 3^n - 1; n \ge 1$$

[10 marks]

Question 2

Given set $A = \{a, b, c, d\}$ and R is given in a diagraph as in Figure 2.

Figure 2

- (a) Change the diagraph of R into:
 - (i) matrix, M_R
 - (ii) set, R

[2 marks]

(b) Find the in-degree and out-degree for each element.

[2 marks]

(c) Find the diagraph of R⁻¹ and R complement.

[4 marks]

(d) Determine whether R is an equivalence relation or not. Give your reason.

[3 marks]

Question 3

Given a matrix M_R below, find the transitive closure by using Warshall Algorithm.

$$\mathbf{M}_{R} = \begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ 1 & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ 1 & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \end{pmatrix}$$

[9 marks]

Question 4

(a) Let $A = \{1, 2, 3\}$ and $B = \{4, 5, 6\}$. Determine whether the relations R_1 , R_2 and R_3 below is a function or not. Give your reason.

[2 marks]

[2 marks]

[2 marks]

- (b) Let $A = \{1, 2, 3, 4, 5, 6\}.$
 - (i) Find the result of permutation function of (3, 5, 1, 4) ° (1, 3, 2, 6).

[4 marks]

(ii) Then, find its cycles.

[2 marks]

(iii) Then, find the product transposition.

[1 mark]

(iv) Identify either it is an odd or even permutation.

[1 mark]

Question 5

Figure 3 below is a Hasse Diagram, consist of vertices a, b, c, d, e, f, g, h and i.

Figure 3

Find SIX (6) topological sorting for the Hasse Diagram.

[6 marks]

Question 6

A graph is given as in Figure 4 below.

Figure 4

Answer the following questions.

(a) Find the degree of each vertex in the graph.

[2 marks]

(b) Does the graph have a Euler circuit or path? Give a circuit or path if there is any.

[6 marks]

(c) Identify a Hamilton cycle in the graph.

[3 marks]

(d) Find the Minimal Spanning Tree using Prim's approach starting from A and find the shortest distance needed to cover all the vertices.

[9 marks]

--- End of Questions---