
COMPUTER ORGANIZATIONCMPD223

May 2014 Systems and Networking 1

CSNB153 COMPUTER SYSTEM



COMPUTER ORGANIZATIONCMPD223

2

COMPUTER SYSTEM

• Permanent blocking of a set of processes that 
either compete for system resources or 
communicate with each other

• No efficient solution in general case

• Involve conflicting needs for resources by two 
or more processes

Deadlock



COMPUTER ORGANIZATIONCMPD223

3

COMPUTER SYSTEM



COMPUTER ORGANIZATIONCMPD223

4

COMPUTER SYSTEM

• Consider two processes that compete for 
exclusive access to disk file D and tape drive T.

• The program operations shown in figure 6.4 
below.

Example Deadlock

Process P Process Q



COMPUTER ORGANIZATIONCMPD223

5

COMPUTER SYSTEM

• Four conditions of policy must be present for a 
deadlock to be possible:

1. Mutual exclusion

2. Hold and wait

3. No preemption

4. Circular wait

Conditions for Deadlock



COMPUTER ORGANIZATIONCMPD223

6

COMPUTER SYSTEM

1. Mutual exclusion

Only one process at a time can use a resource

2. Hold-and-wait

A process holding at least one resource and waiting 
to acquire additional resources held by other 
processes.

Conditions for Deadlock



COMPUTER ORGANIZATIONCMPD223

7

COMPUTER SYSTEM

3. No preemption
A resource can be released only voluntarily by the 
process holding it after that process has completed its 
task.

4. Circular Wait
A closed chain of processes exists, such that each 
process holds at least once resources needed by the next 
process in the chain. P0 is waiting for P1, P1 is waiting 
for a resource that is held by Pn and Pn is waiting for 
resource that is held by P0

Conditions for Deadlock



COMPUTER ORGANIZATIONCMPD223

8

COMPUTER SYSTEM

• The most important approaches that have been 
developed:
1. Deadlock Prevention

• Prevent deadlock by adopting a policy that eliminates one of 
the conditions

2. Deadlock Avoidance
• Avoid deadlock by making the appropriate dynamic choices 

based on the current state of resource allocation.

3. Deadlock Detection
• Attempt to detect the presence of deadlock and take action 

to recover.

Approaches for Deadlock



COMPUTER ORGANIZATIONCMPD223

9

COMPUTER SYSTEM

• To design a system in such a way that the 
possibility of deadlock is excluded.

• Method falling into two classes:

1. Indirect method

– to prevent the occurrence of one of the three necessary 
condition listed previously.

2. Direct method

– to prevent the occurrence of circular wait.

Deadlock Prevention



COMPUTER ORGANIZATIONCMPD223

10

COMPUTER SYSTEM

Techniques related to each four:

1. Mutual Exclusion (ME)
 Cannot be disallowed  MUST BE ALLOWED!!

 If access to resources require ME, then ME must 
be supported by the OS.

 But deadlock still can occur (in some resources):
E.g.. Files may allow multiple accesses for reads but only 
exclusive for writes.

• Deadlock can occur if more than one process requires 
write permission.

Deadlock Prevention…



COMPUTER ORGANIZATIONCMPD223

11

COMPUTER SYSTEM

2. Hold and Wait
 Prevented by requiring that a process request all of its 

required resources at one time and blocked the 
process until all request can be granted 
simultaneously.

 This approach inefficient because:
i. Process may be held up for along time waiting for all of its 
resources to be filled, when in fact it could have been 
proceeded with only some of the resources.

ii. Resource allocated to a process may remain unused for a 
considerable period. During which time they are denied to 
other processes.

Deadlock Prevention…



COMPUTER ORGANIZATIONCMPD223

12

COMPUTER SYSTEM

iii. Process may not know in advance all of the resources 
that it will require.

Deadlock Prevention…



COMPUTER ORGANIZATIONCMPD223

13

COMPUTER SYSTEM

3. No Preemption
 Can be prevented in several ways:

i. If a process holding certain resources is denied a further 
request, that process must release its original resources 
and if necessary request again with the additional 
resource.

ii. If a process request a resource that is currently held by 
another process, the OS must preempt the second process 
and require it to release its resource.

– Practical only when applied to resources whose state 
can be easily saved and restored later, e.g. a processor.

Deadlock Prevention…



COMPUTER ORGANIZATIONCMPD223

14

COMPUTER SYSTEM

4. Circular Wait

 Can be prevented by defining a linear ordering 
resource types.

– If a process has been allocated resources of type R, then 
it may subsequently request only those resources of type 
following R in the ordering.

- E.g.
Let us associate an index with a each resource type. Then 
resource Ra precedes Rc in the ordering if a< c (using 
alphabetical order).

Deadlock Prevention…



COMPUTER ORGANIZATIONCMPD223

15

COMPUTER SYSTEM

– Suppose that two processes, A and B, are deadlocked 
because A has acquired Ra and requested Rc, and B 
acquired Rc and requested Ra. This condition is impossible 
because it implies a < c and c < a

– circular wait prevention may be inefficient because it 
will slowing down process and denying resource access 
unnecessarily.

Deadlock Prevention...



COMPUTER ORGANIZATIONCMPD223

16

COMPUTER SYSTEM

• Allow the 3 policy conditions but make 
judicious choices to assure that the deadlock 
point is never reached.

• Allows more concurrency than prevention.

• A decision is made dynamically whether the 
current resource allocation request will, if 
granted, potentially lead to a deadlock

• Requires knowledge of future process request

Deadlock Avoidance



COMPUTER ORGANIZATIONCMPD223

17

COMPUTER SYSTEM

• Two approaches of deadlock avoidance:

1. Do not start a process if its demands might lead to 
deadlock

2. Do not grant an incremental resource request to a 
process if this allocation might lead to deadlock.

• In both cases: maximum requirements of each 
resource must be stated in advance.

Deadlock Avoidance…



COMPUTER ORGANIZATIONCMPD223

18

COMPUTER SYSTEM

Advantage:

 Does not necessarily preempt and rollback processes 
compared to deadlock detection.

 But has a number of restrictions:

• Maximum resource requirement must be stated in advance

 Processes under consideration must be independent; 
no synchronization requirements.

 There must be a fixed number of resources to allocate

 No process may exit while holding resources

Deadlock Avoidance…



COMPUTER ORGANIZATIONCMPD223

19

COMPUTER SYSTEM

• Do not limit resource access or restrict process 
actions.

• Resource access are granted to process 
whenever possible.

• OS will periodically performs:

 an algorithm to check if deadlock present

 an algorithm to recover from deadlock

Deadlock Detection



COMPUTER ORGANIZATIONCMPD223

20

COMPUTER SYSTEM

• The deadlock check can be performed at every 
resource request.

• Checking at each resource request has two 
advantages:

i. Leads to early detection

ii. Algorithm is simple

– because it is based on incremental changes to the state of the 
system.

• But such frequent checks will consume CPU time.

Deadlock Detection…



COMPUTER ORGANIZATIONCMPD223

21

COMPUTER SYSTEM

• Needed when deadlock is detected.

• The following approaches are possible:

1. Abort all deadlocked processes (one of the most 
common solution adopted in OS).

2. Back up each deadlocked process to some 
previously defined checkpoint, and restart all 
process

Deadlock Detection Recovery



COMPUTER ORGANIZATIONCMPD223

22

COMPUTER SYSTEM

3. Successively abort deadlock processes until 
deadlock no longer exists

 After each abortion, need to re-invoke the 
deadlock detection algorithm to see either 
deadlock still exists or not.

4. Successively preempt some resources from 
processes and give them to other processes until 
deadlock no longer exists

 a process that has a resource preempted must be 
rolled back prior to its acquisition of that resource.

Deadlock Detection Recovery



COMPUTER ORGANIZATIONCMPD223

23

COMPUTER SYSTEM

• For approaches 3 and 4: a victim process 
needs to be selected according to:

 Least amount of processor time consumed so far

 Least number of lines of output produced so far

 Most estimated time remaining

 Least total resources allocated so far

 Lowest priority

Deadlock Detection Recovery



COMPUTER ORGANIZATIONCMPD223

24

COMPUTER SYSTEM

• Combine the previous approaches into the 
following way:

 Group resources into a number of different 
resource classes.

 Use the linear ordering strategy (prevention of 
circular wait) to prevent deadlock between 
resource classes

 Within a resource class, use the algorithm that is 
most appropriate for that class.

Integrated Deadlock Strategy



COMPUTER ORGANIZATIONCMPD223

25

COMPUTER SYSTEM

• Example of resource classes:
 Swappable space

• Blocks of memory on secondary storage for use in 
swapping processes.

 Process resources
• Assignable devices, such as tape drives and files

 Main memory
• Assignable to processes in pages and segments

 Internal resources
• Such as I/O channels

Integrated Deadlock Strategy



COMPUTER ORGANIZATIONCMPD223

26

COMPUTER SYSTEM

• is the name given to the indefinite
postponement of a process because it
requires some resource before it can run, but
the resource, though available for allocation,
is never allocated to this process.

Starvation



COMPUTER ORGANIZATIONCMPD223

27

COMPUTER SYSTEM

Starvation is caused by failure to allocate some resource 
to a process, so to find the causes we must inspect the 
policies which the system uses in handling resources. 
Here are some possibilities. 

• Processes hand on resources to other processes without 
control. If processes queue for a resource, and the resource is 
always handed on to the next process in the queue, it is 
essential that every process awaiting the resource must be 
placed in the queue.
• Processes' priorities are strictly enforced. If a process of 
worse priority requires a resource in competition with a 
constant stream of processes of better priority, it might wait 
for ever. 

CAUSES OF STARVATION



COMPUTER ORGANIZATIONCMPD223

28

COMPUTER SYSTEM

• "Random" selection is used. If processes awaiting 
service are not queued, but a random process is 
selected whenever the resource becomes available, 
it is possible for some processes to wait for a very 
long time. 

• Not enough resources. This is commonly the real 
problem, so far as physical resources are concerned, 
though as its solution costs money it might be a hard 
one to solve. 



COMPUTER ORGANIZATIONCMPD223

29

COMPUTER SYSTEM

• There must be an independent manager for each 
resource, which must manage all allocations of its 
resource; this will guarantee that processes don't just 
pass resources around between themselves without 
making them available for general allocation.

• Strict priorities should not be enforced. A poor priority 
should be regarded as a weak claim, but not an over 
ridable claim. 

• Avoid random selections, uncontrolled competition, etc. 

• Provide more resources. This is the only satisfactory 
solution. 

REMEDIES. 



COMPUTER ORGANIZATIONCMPD223

30

COMPUTER SYSTEM


