

CHAPTER 4 TOP LEVEL VIEW OF COMPUTER FUNCTION AND INTERCONNECTION

CGMB143 COMPUTER SYSTEM

What is a program?

Computer Components

Instruction Cycle

- Two steps
 - Fetch cycle
 - Execute cycle

Fetch Cycle

Program Counter (PC)

Processor

Instruction Register (IR)

Processor

- Holds address of next instruction to fetch
- Fetch instruction from memory location pointed to by PC
- Increment PC

Load the instruction

- Interprets instruction
- Perform required actions

Execute Cycle

Interrupts

 Mechanism by which other modules (e.g. I/O) may interrupt normal sequence of processing

Interrupt Cycle

Added to instruction cycle

Interrupt Cycle (Cont.)

- Processor checks for interrupt
 - Indicated by an interrupt signal
- If no interrupt, fetch next instruction
- If interrupt pending:
 - Suspend execution of current program
 - Save context
 - Set PC to start address of interrupt handler routine
 - Process interrupt
 - Restore context and continue interrupted program

Interconnection Structures

- Collection of paths connecting the various modules
- Modules:
 - Memory
 - Processor
 - I/O module

Modules: Major Form of Input and Output - Memory

- Word of data Read from or written into the memory
 - Assigned a unique numerical address
- Nature of the operation indicated by read and write control signals
- Address specify the location for the operation

Modules: Major Form of Input and Output - Processor

- Reads instruction and data
- Writes out data (after processing)
- Sends control signals to other units
- Receives (& acts on) interrupts

Modules: Major Form of Input and Output – I/O Module

- Operations;
 - Read
 - Write
- Control more than one external device
- External data path input and output of data
- Send interrupt signals to CPU

Modules: Major Form of Input and Output

Types of Transfers

- Memory to processor: Processor reads instruction/data from memory
- Processor to memory: Processor writes data to memory
- I/O to processor: Processor reads data from I/O device (via I/O module)
- Processor to I/O: Processor sends data to I/O device
- I/O to/from memory: allowed to exchange data using Direct Memory Access (DMA) – exclude processor

Bus Interconnection

- Communication pathway connecting two or more devices
- Key characteristic: shared transmission medium
- Consists of multiple communication pathways/lines
 - Lines transmit signals representing binary 1 and
 0 one data at a time

System Bus

- A bus that connects major computer components (CPU, memory, I/O)
- Computer interconnection structures use one or more system buses
- Consists of 50 to hundreds of separate lines
 - Each line function. E.g. power

Data Line

- Provide a path for moving data among system modules
- Collective data bus

Data Bus

- Collective of data lines
- Width of the data bus Number of lines;
 - **3**2, 64, 128 ...
 - Key factor in determining overall system performance
- Number of data lines represents number of data can be transferred at a time

Address Lines

Designate the source or destination of the data on data bus

Address Bus

- Collective of address lines
- Width of the address bus determines the maximum possible memory capacity of the system

Control Lines

- Used to control the access to and the use of the data and address lines
- Control signals transmit both command and timing information among system modules
 - Command signals specify operations to be performed
 - Timing signals validity of data and address information

Bus Interconnection Scheme

Operation of the Bus

- Send data
 - Obtain the use of the bus
 - Transfer data via the bus
- Request data
 - Obtain the use of the bus
 - Transfer a request to the other module over appropriate control and address lines

System Bus - Physical

 Number of parallel electrical conductors – metal lines on the circuit board

Single Bus - Problem

- Many of devices on one bus leads to:
 - Propagation delays
 - Long data paths mean that co-ordination of bus use can adversely affect performance
 - If aggregate data transfer approaches bus capacity
- Most systems use multiple buses to overcome these problems

Types of Bus

- Dedicated
 - Separate data & address lines
- Multiplexed
 - Shared lines
 - Address valid or data valid control line
 - Advantage
 - Fewer lines
 - Disadvantages
 - More complex control
 - Reduction in performance

Bus Arbitration

 Process of insuring only 1 devices places information onto the bus at a time

Bus Timing

- Synchronous
 - Occurrence of events on the bus is determined by the clock
 - All events start at the beginning of a clock cycle
 - Example: PCI bus (Peripheral Component Interface bus
- Asynchronous
 - The occurrence of one event follows and depends on the occurrence of a previous event
 - More flexible than synchronous bus but more complicated as well
 - Accommodates wider range of device speeds
 - Example: Futurebus+

