CGMB143 COMPUTER SYSTEM

CHAPTER 5

Process Desecription and Control

Process Description and Control

e All multiprogramming OS are build around the
concept of processes

* A process is sometimes called a task

Major Requirements of an OS

* OS must interleave the execution of several
processes to maximize processor usage while
providing reasonable response time.

* OS must allocate resources to processes while
aVOiding deadlock.- whena A enters a

waiting because a requested is being held by Process B, which
in turn is waiting resource held by process A.

* OS must support inter process communication
and user creation of processes.

https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Process_states
https://en.wikipedia.org/wiki/Resource

Process

* A process is created for a program to be
executed.

e Also called a task

* Execution of an individual program Involves a
sequence of instruction within that program.

 Can characterize the behavior of a process by
listing the sequence (trace of the process) of
instructions that execute for that process.

Process Trace

* Figure 3.1 shows a memory layout of three
processes.

* Assume no used of virtual memory.
* All of the process are fully loaded in the main
memory.

* There is dispatcher program that switches the
processor from one process to another.

CGMVB143 COMPUTER SYSTEM

Figure 3.1 Snupshot of Example Execution (Figure 337
at Instruction Cycle 13

Process Trace..

* Figure 3.2 shows the trace of three processes
during early part of their execution.

* First 12 instructions executed in processes A
and C are shown.

 Process B executes four instructions and
assume that the fourth instruction invokes
and /0 operation for which the process must
wait.

CGMVB143 COMPUTER SYSTEM

F000
S001
S002
S003
a004
5005
J006
5007
A008
F0085
3010
3011

LN
8001
B2
B003

(a) Trace of PFrocess A (b) Trace of Process B [(e) Trac

SO00 = Gtarting address of program of Process A
S000 = Starting address of program ofProcess B
L2000 = Starting address of pregram of Process O

Figure 3.2 Traces of Processes of Figure 3.1

12000
12001
12002
12003
12004
12005
12005
12007
12008
L2005
12010
12011

& of Process O

Process Trace..

* Figure 3.3 shows traces from processor’s point
of view.

* |t shows the interleaved traces resulting from
the 52 instruction cycles.

e Assume OS allowed a process to continue
execution for a maximum of 6 instruction
cycles, then the process will be interrupted,
thus its prevent single process from
monopolizing processor

Process Trace..

* The first 6 instructions of process A are
executed, followed by a time-out and
execution of some code in the dispatcher,
which execute 6 instructions before turning
control to process B

e After 4 instructions are executed, process B
request and 1/O action for which it must wait.

Process Trace..

* The processor stops executing process B and
moves on to process C.

e After time-out, the processor moves back to
process A.

 When the process times out, process B is still
waiting for I/O operation to complete, so the
dispatcher moves on to process C again.

CGMVB143 COMPUTER SYSTEM

]
i

EFEEETEEEE| HEgEE]

poebhAREEYNHEHEREE | BY
EEEEEERERESESR0088 B3

EEYHEES =g YR M A

]
1

S0 = ey eihm o of depat by pED

thabrd cwu olis aln poeslim ol Sy b jesen,
Vot il Bhard rrdamars. conaril ward ractsom opias
st wrd e o e ik s of L R g 43 s

Figurr 38 Combimrd Treer of Frecesss of Figurr 21

12

Dispatcher

* |san OS program that moves the processor
from one process to another.

* |t prevents a single process from monopolizing
orocessor time.

* |t decides who goes next according to a
scheduling algorithm.

 The CPU will always execute instructions from
the dispatcher while switching from process A
to process B

Process Creation

* Reasons for process creation:
= Submission of a batch job
= User logs on

" Created to provide a service such as printing (ex:
printing a file).

" Process creates another process (Process
Spawning)

Process Termination

* General reasons for process termination:
= Batch job issues Halt instruction
= User logs off

" Process executes a service request to terminate
(Quit an application)

" Parent process terminate
= Parent ask to terminate the child
= Error and fault conditions

Process Termination..

e Reasons for error and fault condition :
" Time limit exceeded
" Memory unavailable

= Bounds violation -attempted access of (non-existent)
11th element of a 10-element array

=" Protection error

* example write to read-only file

= Arithmetic error - attempted division by zero

Process Termination..

Time overrun -process waited longer than a specified
maximum for an event

|/O failure

Invalid instruction - when a process tries to execute
data (text)

Privileged instruction - defined as the delegation of
authority over a . A privilege is

a to perform an action. Examples of
various privileges include the ability to create a in
a . or to read or delete a file etc.

Data misuse
Operating system intervention - to resolve a deadlock

https://en.wikipedia.org/wiki/Computer_system
https://en.wikipedia.org/wiki/Permission
https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/Directory_(file_systems)

Two-State Process Model

* Process may be in one of two states
= Running
= Not-running

Dispaich

m

Faer _@L) (Iurlnllq.: i

‘\‘“___.-”f

Favsg

L} Sbale Dranslibon olagran

—

18

Two-State Process Model..

* When OS creates a new process, it enters that
process into Not Running State.

* The existence of the process is known by the OS
and is waiting for an opportunity to execute.

* Running process will be interrupted from time to

time and dispatcher will select a new process to
run.

* Process will moves from the Running state to Not

Running state, another process will moves to the
Running state.

Two-State Process Model..

* Each process must be represented in some way
so that OS can keep track of it.

" There must be some information relating to each
process, including current state and location of main
memory.

* Process that are not running must be kept in
some sort of queue, waiting their turn to be
execute.

* Figure 3.4b suggests a structure to deploy two
state process model.

Not-Running Process in a Queue

LTI

FFFFFF

21

Two-State Process Model..

 There is a single queue in which each entry is
a pointer to a particular process.

* The queue must consist of linked list of data

blocks, in which each block represents one
process.

 The queue is first in first out (FIFO) list and the
processor operates in Round robin.

Process

* Queuing suggested in Figure 3.4b will be
effective if all processes were always ready to
execute.

 BUT it is inadequate because some process
that are in state either:

" ready to execute

* blocked because of waiting for I/O operation
complete.

Process..

* By using queuing on fig. 3.4b, the dispatcher has
to scan the queue looking for the process that is
not blocked and has been in queue the longest.

* A way to tackle this situation is to split the Not
Running state into two different states which are:

= Ready state: Ready to execute
= Blocked state: waiting for I/O

* Now, instead of two states we have three states
—=>Ready, Running, Blocked

Process..

* For a good measure, there are another two
additional states that will be useful for process
management:

* New state:

* OS performed the necessary actions to create the
process
= Process ID
= Tables needed to manage the process
* but has not yet committed to execute the process
(not yet admitted)
" because resources are limited

Process..

* Exit state:
 Termination moves the process to this state.

* |tis nolonger eligible for execution

* Tables and other info are temporarily preserved
for auxiliary program

= Ex: accounting program that cumulates resource
usage for billing the users

* The process (and its tables) gets deleted when
the data is no more needed.

CGMVB143 COMPUTER SYSTEM

Figure 3.5 Five-State Process Model

http://courses.cs.vt.edu/csonline/OS/Lessons/Processes/index.html

27

http://courses.cs.vt.edu/csonline/OS/Lessons/Processes/index.html

CMPD223 COMPUTER ORGANIZATION

A Five-State Model

Running —> the process that is currently being
executed.

Ready —> a process that is prepared to execute when
given the opportunity.

Blocked —> a process that cannot execute until some
event occurs, such as the completion of I/O operation.

New —> a process that has just been created but not
being admitted to the pool of executable process by
the OS (not being loaded in the main memory).

Exit —> a process that has been released from the pool
of executable processes by the OS, either because it
halted or aborted for some reason.

28

Process Transitions

* Figure 3.5 indicates the possible state transition
as follows:

e Null New
= A new process is created to execute a program.

* New —> Ready

= OS will move the process from New to Ready state
when it is prepared to take an additional process.

* Ready —2Running

= When it is time, the dispatcher selects a new process
to run

Process Transitions..

* Running —> Exit

" The currently Running process is terminated by
the OS if the process indicates that it has
completed or if it aborts.

* Running —> Ready
» the running process has expired his time slot

" the running process gets interrupted because a
higher priority process is in the ready state

