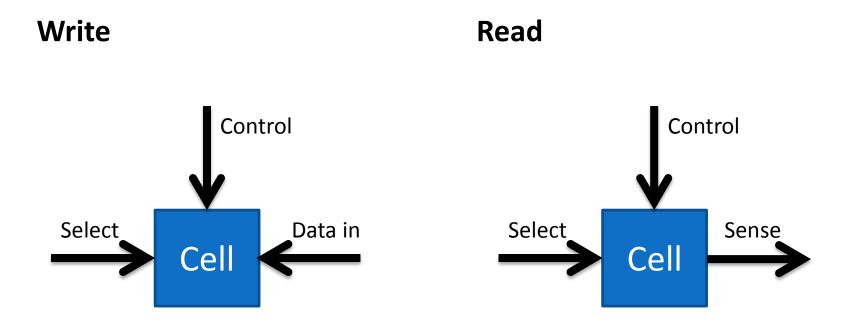


CHAPTER 6 INTERNAL MEMORY

CGMB143 COMPUTER SYSTEM


Objectives

- To study the types of semiconductor main memory subsystems
 - RAM
 - DRAM
 - SRAM
- ROM
- Error correction

Semiconductor Main Memory

- Basic element of semiconductor main memory (smm) – memory cell
- Cell properties;
 - 2 stable states 0 and 1 ← binary
 - Capable of being written to set the state
 - Capable of being read to sense the state

Memory Cell Operation

Functional Terminal - Capable of carrying an electrical signal

Three Functional Terminals

- Select terminal select memory cell for read or write operation
- Control terminal indicates read or write
 - Write other terminal provides an electrical signal
 - > sets the state of the cell to 1 or 0
 - Read that terminal is used for output of the cell's state

All memory types in this chapter are random access

Semiconductor Memory Types

Memory Type	Category	Erasure	Write Mechanism	Volatility
Random-access memory (RAM)	Read-write memory	Electrically, byte-level	Electrically	Volatile
Read-only memory (ROM)	Read-only memory	Not possible	Masks	
Programmable ROM (PROM)			Electrically	Nonvolatile
Erasable PROM (EPROM)	Read-mostly memory	UV light, chip- level		
Electrically Erasable PROM (EEPROM)		Electrically, byte-level		
Flash memory		Electrically, block-level		

SEMICONDUCTOR MEMORY

All semiconductor memory is random access

DRAM

SRAM

Random Access Memory (RAM)

- Characteristic
 - Read/Write read data from the memory and to write new data into the memory
 - Use electrical signals
 - Volatile must have constant power supply else data lost.
 - Temporary storage
- 2 traditional forms of RAM
 - DRAM
 - SRAM

Dynamic RAM (DRAM)

- Made with cells that store data as charge on capacitors
- The presence or absence of charge in a capacitor is interpreted as a binary 1 or 0
 - Capacitors have tendency of discharging needs to periodically charge to maintain data storage
- The term dynamic refers to this tendency of the stored charge to leak away

DRAM Operation

Write

- A voltage signal is applied to the bit line
- A high voltage represent 1, a low voltage represent 0
- A signal is then applied to the address line allowing a charge to be transferred to the capacitor

Read

- Select address line. The transistor turns on and the charge stored on the capacitor is fed out onto a bit line and to a sense amplifier
- The sense amplifier compares the capacitor voltage to a reference value and determines if the cell contains a logic 1 or logic 0
- The readout from the cell discharges the capacitor which must be restored to complete the operation

CGMB143 COMPUTER SYSTEM

DRAM (Cont.)

- Analog device
- Capacitor stores any charge value within a range
 - Threshold value determine whether the charge is interpreted as 0 or1

Static RAM (SRAM)

A digital device
Use the same logic elements as in the processor
The binary values are stored using traditional flip-flop logic gate configuration
Data remains as long as power is supplied to it

CGMB143 COMPUTER SYSTEM

DRAM versus SRAM

Volatile – need power to preserve data **DRAM**SRAM

- Simpler to build, smaller
- More dense
- Less expensive
- Needs refresh
- Larger memory units
- Use as main memory

- Faster
- Use as cache memory

Read Only Memory (ROM)

- Permanent storage
 - Nonvolatile
- Use in
 - Microprogramming
 - Library subroutines
 - Systems programs (BIOS)
 - Function tables

Types of ROM

- ROM
- PROM
- EPROM
- EEPROM
- Flash memory

ROM

Data is written during manufacture

PROM – Programmable ROM

- Nonvolatile
- Written once
 - Electrically supplier or user
 - Perform after fabrication
 - Need special equipment to program

EPROM – Erasable PROM

- Read/write electrically
- Before a write operation, empty the cells by ultraviolet radiation
- The erase procedure can be performed repeatedly
- Expensive than PROM

Flash Memory

- Intermediate between EPROM and EEPROM; cost and functionality
- Use an electrical erasing tech; much faster than EEPROM
- Possible to erase just blocks of memory

EEPROM – Electrical EPROM

- Can be written into at any time without erasing prior contents - updates bytes address
- Write operation is longer than read operation
- Nonvolatile and flexible in update using ordinary bus control

Chip Logic

- Each chip contains an array of memory cells
- The array is organized into W words of B bits each.
- Example: a 16 Mbit chip could be organized as 1 M 16 words. (word- is a fixed sized group of bits that are handled as a unit by the instruction set and/or hardware of the processor)

Interleaved Memory

- Advance technique used by high-end motherboards/chipsets to improve memory performance
- Increase bandwidth by allowing simultaneous access to more than one bank of memory
- Improves performance since CPU/processor can transfer more information to/from memory in the same amount of time, and helps ease the CPU-memory bottleneck

ERROR CORRECTION

Errors

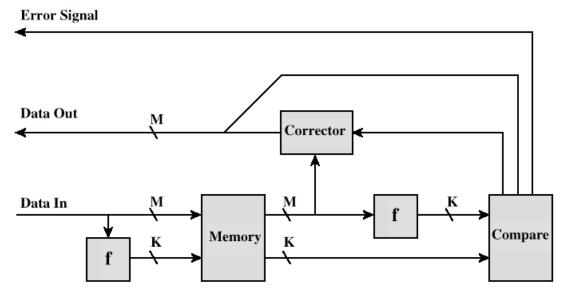
- A semiconductor memory is subject to errors.
- Categories;
 - Hard failures
 - Soft errors
- Example : power supply problem

Errors – Categories

Hard Failures

 A permanent physical defect so that the memory cells affected cannot reliably store data but become stuck at 0 or 1

Soft Error


 A random, nondestructive event that alters the contents of one or more memory cells without damaging the memory

Process of Detecting and Correcting Errors

- When data are to be read into memory, a calculation, function f is performed on the data to produce a code
- Both the code and the data are stored
- If M –bit word of data is to be stored and the code is of length K bits, then the actual size of the stored word is M + K bits

Process of Detecting and Correcting Errors (Cont.)

- When the previous stored word is read out, the code is used to detect and possibly correct errors
- A new set of K code bits is generated from the M data bits and compared with the fetched code bits

CGMB143 COMPUTER SYSTEM

Process of Detecting and Correcting Errors (Cont.)

- Three results of the comparisons;
 - No errors-the fetched data bits are sent out
 - An error is detected-possible to correct, the data bits +error correction bits are fed out into a corrector, which produces a corrected set of M bits to be sent out
 - An error is detected and connect be corrected, this condition is reported

Process of Detecting and Correcting Errors (Cont.)

- The codes are referred as error-correcting codes
- A code is characterized by the number of bit errors in a word that it can correct and detect
- The simplest error-correcting codes is the Hamming code