

CHAPTER 6 EXTERNAL MEMORY

CGMB143 COMPUTER SYSTEM

Types of External Memory

- Magnetic Disk
- Optical
- Magnetic Tape

COMPUTER SYSTEM

MAGNETIC PISK

Magnetic Disk

- Disk
 - A circular platter constructed of nonmagnetic material called substrate
 - Aluminium (old)
 - Glass (new)
 - Coated with a magnetisable material

Magnetic Disk (Cont.)

- Glass
 - Improved surface uniformity
 - Increases reliability
 - Reduction in surface defects
 - Reduced read/write errors
 - Better stiffness
 - Greater ability to withstand shock and damage

Magnetic Disk – Read/Write

- Mechanisms
 - Recording & retrieval via conductive coil called a head
 - May be single read/write head or separate ones
 - During read/write, head is stationary, platter rotates

Magnetic Disk - Read/Write (Cont.)

Write

- Current through coil produces magnetic field
- Pulses sent to head
- Magnetic pattern recorded on surface below

Read

- Traditional
 - Magnetic field moving relative to coil produces current
 - Coil is the same for read and write
- Contemporary
 - Separate read head, close to write head
 - Partially shielded magneto resistive (MR) sensor
 - Electrical resistance depends on direction of magnetic field
 - High frequency operation
 - Higher storage density and speed

Magnetic Disk – Organization, Formatting & Layout

Term	Description
Head	A small device capable of reading from or writing to a portion of the platter rotating beneath it
Track	Organize data on the platter in a concentric set of rings
Width	Track width = head width
Gaps	separate the adjacent tracks
Sectors	Form of transferring the data Fixed length or variable length

Magnetic Disk - Layout Methods Diagram

(a) Constant angular velocity

(b) Multiple zoned recording

Magnetic Disk – Constant Angular Velocity

(a) Constant angular velocity

- The disk is divided into a number of pie-shaped sectors and into a series of concentric tracks
- Advantage of CAV:
 - The individual blocks of data can be directly addressed by tracks and sectors
- Disadvantage of CAV:
 - The amount of data that can be stored on the long outer tracks is the only same as what can be stored on the short inner tracks

Magnetic Disk – Multiple Zone Recording

(b) Multiple zoned recording

- The surface is divided into a number of concentric zones –
 - The number of bits per track is constant (Within the zone)
 - Zones farther from the center contain more bits (since more sectors) than zones closer to the center
- Advantage:
 - Increase density
- Disadvantage:
 - Require complex circuitry

Magnetic Disk – Physical Characteristics

- Head motion
 - Fixed head
 - One read write head per track
 - Heads mounted on fixed ridged arm
 - Movable head
 - One read write head per side
 - Mounted on a movable arm

Magnetic Disk – Physical Characteristics (Cont.)

- Removable disk
 - Can be removed from drive and replaced with another disk
 - Provides unlimited storage capacity
 - Easy data transfer between systems
- Non-removable disk
 - Permanently mounted in the drive

Magnetic Disk – Classifications

Head mechanism

- #1 Traditional head
 - Positioned a fixed distance above the platter-allowing an air gap
- #2 head mechanism that actually comes into physical contact with the medium during R/W operation
 - Used in floppy disk
 - 8", 5.25", 3.5"
 - Small capacity
 - Up to 1.44Mbyte (2.88M never popular)
 - Slow
 - Universal
 - Cheap

CGMB143 COMPUTER SYSTEM

Magnetic Disk – Classifications (Cont.)

Head mechanism

- #3 Winchester
 - Aerodynamic gap
 - Generate or sense an electromagnetic field of sufficient magnitude - write/read
 - Used in sealed drive free of contamination able to reduce the risk of error
 - Operate closer to the disk's surface → greater data density
 - Material Aerodynamic foil rests lightly on the platter's surface

Magnetic Disk - Performance

- Depends on;
 - Computer system
 - OS
 - Nature of the I/O channel
 - Disk controller hardware

Magnetic Disk - Performance (Cont.)

General timing of disk I/O transfer

- Seek time → Moving head to correct track
- (Rotational) latency/delay → Waiting for data to rotate under head
- Access time = Seek + Latency
- Transfer rate-the time required for the transfer data

OPTICAL STORAGE

CD-ROM

(Direct Access)

DVD-ROM

(Direct Access)

CD-R

(Direct Access)

DVD-R

(Direct Access)

CD-RW

(Direct Access)

DVD-RW

(Direct Access)

DVD-RAM

(Direct Access)

Blu-Ray Disc

(Direct Access)

Optical Storage

- Originally for audio
- 650Mbytes giving over 70 minutes audio
- The disk is formed from a resin such as polycarbonate.
- Record data digitally (music/computer data)
- Data recorded as a series of microscopic pits on the surface of the polycarbonate

CGMB143 COMPUTER SYSTEM

Optical Storage (Cont.)

- Organized in a single spiral track in a sequence of blocks
- Sectors near the outside of the disk are the same length as those near the inside
- Info is packed evenly across the disk in segments of the same size - scanned at the same rate by rotating the disk as a variable speed
- The pits are then read by the laser as a constant linear velocity (CLV)

Optical Storage - Writing

Create a master disk – high-intensity laser

Use **master** to make a die to stamp out copies onto polycarbonate

Pitted surface - coated with a highly reflective surface (aluminium / gold)

Shiny surface - protected against dust and scratches by suing a top coat of clear **acrylic**

A label can be silkscreened onto the acrylic

Optical Storage - Reading

Optical Storage - Reading

Optical Storage – Types

- CD-ROM
- CD-R
- CD-RW
- DVD

Optical Storage – CD-ROM

- Appropriate for large amount of data
- Removable
- Disadvantages:
 - Read only-cannot be updated
 - The access time is longer compared to magnetic disk drive

Optical Storage – CD-R

- CD-Recordable
- Write Once Read only Memory (WORM)
- Compatible with CD-ROM drives

Optical Storage – CD-RW

- Erasable
- Getting cheaper
- Mostly CD-ROM drive compatible
- Can be rewritten and can used as secondary storage similar to magnetic disk

Optical Storage – DVD

- Digital Video Disk
 - Used to indicate a player for movies
 - Only plays video disks
- Digital Versatile Disk
 - Used to indicate a computer drive
 - Will read computer disks and play video disks

Optical Storage – DVD

Technology

- Multi-layer
- Very high capacity (4.7G per layer)
- Full length movie on single disk
 - Using MPEG compression

Optical Storage – DVD (Cont.)

High Definition

- Designed for high definition videos
 - Much higher capacity than DVD
 - Shorter wavelength laser
 - Blue-violet range
 - Smaller pits
- HD-DVD
 - 15GB single side single layer
- Blu-ray
 - Data layer closer to laser
 - Tighter focus, less distortion, smaller pits
 - 25GB on single layer
 - Available read only (BD-ROM), Recordable once (BR-R) and rerecordable (BR-RE)

CGMB143

MAGNETIC TAPE

Magnetic Tape

- Tape system use the same reading/writing technique as disk system
- Made from polyester tape coated with magnetizable material
- Data on the tape are structured as a number of parallel tracks running lengthwise
- Serial access
- Slow
- Very cheap
- Backup and archive