
COMPUTER ORGANIZATIONCMPD223

1

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

2

COMPUTER ORGANIZATIONCMPD223

Memory Management

• In uniprogramming system, memory is divided
into two parts:
 for the OS

 for the program that currently being executed – user
part

• In multiprogramming system, the user part of the
memory must be further subdivided to
accommodate multiple processes.

• The task of subdivision is carried out dynamically
by the OS memory management.

3

CGMB143 COMPUTER SYSTEMCGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

Memory Management: cont

• Memory needs to be allocated efficiently to
pack as many processes into memory as
possible.

• This is because effective memory
management is important in
multiprogramming system

May 2014 Systems and Networking 4

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

Memory Management Requirements

• Five requirements of memory management:

1. Relocation

2. Protection

3 Sharing

4. Logical Organization

5. Physical Organization

May 2014 Systems and Networking 5

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

6

COMPUTER ORGANIZATIONCMPD223

MMR: Relocation

• Programmer does not know where the program
will be placed in memory when it is executed

• While the program is executing, it may be
swapped to disk and returned to memory at a
different location (relocate process at different
area)

• The location for the process is unknown and the
process must be allowed to moved in and out
due to swapping.

May 2014 Systems and Networking 7

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

• Memory references must be translated to the
actual physical memory address

May 2014 Systems and Networking 8

MMR: Relocation

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

9

COMPUTER ORGANIZATIONCMPD223

MMR: Protection

• Processes should not be able to reference
memory locations in another process without
permission.

• Impossible to check absolute addresses in
programs since the program could be
relocated.

• All memory references must be checked at run
time to ensure that it refer to the only
memory space allocated to the process

May 2014 Systems and Networking 10

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

May 2014 Systems and Networking 11

COMPUTER ORGANIZATIONCMPD223

MMR: Sharing

• Allow several processes to access the same
portion of memory.

• So, any protection mechanism must have the
flexibility, example:
 If a number of processes are executing the same program,

it is advantageous to allow each process access to the
same copy of the program rather than have their own
separate copy  e.g. ECHO procedure

12

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

MMR: Sharing

• Memory management system must therefore allow
controlled access to shared areas of memory without
compromising essential protection.

13

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

14

COMPUTER ORGANIZATIONCMPD223

MMR: Logical Organization

15

CGMB143 COMPUTER SYSTEM

• Programs are written in modules.

• Modules can be written and compiled independently

• Different degrees of protection given to modules (read-only,
execute-only)

• Share modules

COMPUTER ORGANIZATIONCMPD223

MMR: Physical Organization

16

CGMB143 COMPUTER SYSTEM

• Memory available for a program plus its data may be
insufficient.

• Overlaying allows various modules to be assigned the
same region of memory.

• Programmer does not know how much space will be
available.

COMPUTER ORGANIZATIONCMPD223

Memory Management
• Principal operation of memory management is to

bring programs into memory for execution by the
processor.

• In most modern multiprogramming system it
invokes virtual memory (VM) that use both
segmentation and paging techniques.

• First look at simpler technique that do not use
Virtual Memory
 Partitioning
 Simple Paging
 Simple Segmentation

17

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

May 2014 Systems and Networking 18

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

Memory Partitioning

19

CGMB143 COMPUTER SYSTEM

• Divide the memory to small size partition.

• Two types of partitioning:
1. Fixed Partitioning

2. Dynamic Partitioning

COMPUTER ORGANIZATIONCMPD223

Fixed Partitioning

20

CGMB143 COMPUTER SYSTEM

• Most schemes of memory management, assume that
 the OS occupies some fixed partition of memory

 the rest of memory is available for use by multiple processes.
USER AREA

• The simplest scheme for managing this available memory is
to partition it into regions with fixed boundaries.

• Figure 7.2 shows example of two alternatives for fixed
partitioning:
1. Equal-size partition

2. Unequal-size partition

COMPUTER ORGANIZATIONCMPD223

21

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

Fixed Partitioning

22

CGMB143 COMPUTER SYSTEM

• Equal-size partition (Figure 7.2a)

 Divide the memory into same size partition

 any process whose size is less than or equal to the
partition size can be loaded into an available
partition.

 if all partitions are full, the operating system can
swap a process out of a partition

COMPUTER ORGANIZATIONCMPD223

Fixed Partitioning

• Two difficulties:
 A program may not fit in a partition.

– The programmer must design the program with
“overlays”.

 Memory use is inefficient.

– Any program, no matter how small, occupies an
entire partition. This is called internal
fragmentation.

» E.g. Program length 2MB, it occupies an 8MB
partition. So 6MB is internal fragmentation.

23

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

Fixed Partitioning

24

CGMB143 COMPUTER SYSTEM

 Unequal-size partition (Figure 7.2b)

• Divide the memory into different partition size.

• A program as large as 16MB can be accommodate
without need to overlays it.

• Partition smaller than 8MB allow smaller program to be
accommodate with less internal fragmentation.

COMPUTER ORGANIZATIONCMPD223

Fixed Partitioning - Placement
Algorithm

25

CGMB143 COMPUTER SYSTEM

Where to put / load process in memory.

• Equal-size partitions

 If there is an available partition, a process can be
loaded into that partition

• because all partitions are of equal size it does not
matter which partition is used

 If all partitions are occupied by blocked processes,
choose one process to swap out to make room for
the new process

COMPUTER ORGANIZATIONCMPD223

Fixed Partitioning - Placement
Algorithm

26

CGMB143 COMPUTER SYSTEM

• Unequal-size partitions:

 Two ways:

1. Use of multiple queues

• Assign each process to the smallest partition within
which it will fit

• A queue for each partition size

• Tries to minimize internal fragmentation

• Problem: some queues will be empty if no processes
within a size range is present

COMPUTER ORGANIZATIONCMPD223

27

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

Fixed Partitioning - Placement
Algorithm

28

CGMB143 COMPUTER SYSTEM

• 2. Use of a single queue
 When its time to load a process into memory the

smallest available partition that will hold the process
is selected

 If all partitions is occupied:
• Preference to swapping out the smallest partition that will

hold the incoming process.

• Also have to consider other factors such as priority and
blocked vs. ready process.

• Increases the level of multiprogramming at the
expense of internal fragmentation.

COMPUTER ORGANIZATIONCMPD223

May 2014 Systems and Networking 29

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

30

CGMB143 COMPUTER SYSTEM

Fixed Partitioning
• The used of unequal-size partition provides a degree of

flexibility to fixed partitioning.

• Fixed partitioning schemes are relatively simple and
require minimal OS software and processing overhead.

• But it still have disadvantages:
1. The number of partitions specified at system generation
time limits the number of active (not suspended) processes in
the system.

2. Because partition sizes are preset at system generation
time, small jobs will not utilize partition space efficiently.

COMPUTER ORGANIZATIONCMPD223

31

CGMB143 COMPUTER SYSTEM

• The used of fixed partitioning is almost
unknown today.

• Example of OS that use this technique was an
early IBM mainframe OS, OS/MFT (
Multiprogramming with a Fixed Number of
Tasks).

Fixed Partitioning

COMPUTER ORGANIZATIONCMPD223

32

CGMB143 COMPUTER SYSTEM

• Partitions are of variable length and number

• Each process is allocated exactly as much
memory as it requires.

• Used in IBM’s OS/MVT (Multiprogramming
with a Variable number of Tasks)

• An example using 1 MB (1024KB) of memory
is shown in Figure 7.4.

Dynamic Partitioning

COMPUTER ORGANIZATIONCMPD223

33

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

34

CGMB143 COMPUTER SYSTEM

Dynamic Partitioning

• Initially memory is empty, except for the
OS(refer figure a)

• The first three process are loaded in, starting
where the OS ends and occupying just enough
space for each process (refer figure b,c,d).

• This leaves a “hole” at the end of memory that
is too small for a fourth process.

COMPUTER ORGANIZATIONCMPD223

35

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

36

CGMB143 COMPUTER SYSTEM

Dynamic Partitioning
• At some point none of the processes in memory is

ready. OS swaps process 2 (figure e), which leaves
sufficient room to load a new process, process 4 (figure
f). Because process 4 is smaller than process 2, another
small hole is created.

• Later, a point is reached at which none of the processes
in memory is ready, but process 2, in the Ready-
Suspend state is available.

• So OS swaps process 1 out (figure g) and swaps process
2 back in (figure h).

COMPUTER ORGANIZATIONCMPD223

37

CGMB143 COMPUTER SYSTEM

Dynamic Partitioning
• Eventually holes are formed in the memory.
• Memory will become more and more

fragmented, and memory utilization declines.
• This hole is called external fragmentation.

 Referring to fact that the memory is external to all
partitions becomes increasingly fragmented.

• Technique to overcome external fragmentation is
called compaction.
 Time to time OS shifts the processes so that they are

contiguous and so that all of free memory is together
in one block.

COMPUTER ORGANIZATIONCMPD223

38

CGMB143 COMPUTER SYSTEM

Dynamic Partitioning

• Example in figure 7.4h, compaction will result
in a block of free memory of length 256K, and
this maybe sufficient to load an additional
process.

• Difficulties of compaction is time consuming
procedure and wasteful of processor time.

COMPUTER ORGANIZATIONCMPD223

39

CGMB143 COMPUTER SYSTEM

Dynamic Partitioning - Placement
Algorithm

 Where to put / load process in memory.

• OS must decide which free block to allocate to
a process.

• 3 placement algorithms that might be
considered:

1. Best Fit

2. First Fit

3. Next Fit

COMPUTER ORGANIZATIONCMPD223

40

CGMB143 COMPUTER SYSTEM

Dynamic Partitioning - Placement
Algorithm

1. Best Fit

 Chooses the block that is closest in size to the
request.

 Chooses smallest hole

2. First fit:

 Begins to scan memory from the beginning and
chooses the first available block that is large
enough.

 Chooses first hole from beginning

COMPUTER ORGANIZATIONCMPD223

Dynamic Partitioning - Placement
Algorithm

3. Next-fit:

 Begins to scan memory from the last placement
and chooses the next available block that is large
enough.

 Chooses first hole from last placement

41

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

42

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

Dynamic Partitioning - Placement
Algorithm

• Which of these algorithms is best will depend on the
exact sequence of process swapping that occurs and
the size of those processes.

• Remarks for each of the algorithms:
1. First Fit

• The simplest and usually the best and fastest.

2. Next-Fit
• Tends to produce slightly worse result than first fit.
• More frequently lead to an allocation from a free block at the end

of memory.
• Compaction maybe required more frequentlywith next fit

43

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

Dynamic Partitioning - Placement
Algorithm

3. Best Fit

• Worse performer, because this algorithm will looks for
the smallest block that will satisfy the requirement, it
guarantees that the fragment left behind is small as
possible.

• The memory is quickly littered by blocks too small to
satisfy memory allocation requests.

• Compaction must be done more frequently than the
other two algorithms.

May 2014 Systems and Networking 44

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

45

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

Paging

• Partition memory into small equal-size chunks
and divide each process into the same size
chunks.

• The chunks of a process are called pages and
chunks of memory are called frames or page.

• Figure 7.9 illustrates the use of pages and
frames.

• Some of the frames in memory are in use and
some are free and list of

46

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

47

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

48

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

Paging

• PA stored on disk, consists of four pages.

• When it comes to load PA, the OS finds four
free frames and loads the four pages of PA
into the four frames (Fig 7.9b).

• PB consisting of three pages and PC consisting
of four pages are subsequently loaded. (Fig
7.9c,d).

• The PB is suspended and is swapped out of
memory.

49

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

Paging

• Later all of the processes in memory are blocked,
and the OS needs to bring in anew process, PD
that contains five pages.

• From the figure (Fig7. 9e) we can see that there
are no sufficient unused frames to hold the PD.

• Now the concept of logical address is used but
with the absent of base register.

• OS maintains a page table for each process.
 The page table shows the frames location of each

page of the process.

50

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

Paging

• Within the program, each logical address consists
of a page number and an offset within the page.

• Logical to physical address translation is done by
processor and the processor must know how to
access the page table of current process.

• Presented with a logical address (page #, offset),
the processor uses the page table to produce a
physical address (frame #, offset).

• From figure 7.9d, five pages of PD are loaded in
frames 4, 5 ,6 ,11 and 12.

51

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

Paging
• Figure 7.10 shows the various page tables.

• Page table entry contains the number of the frame in
memory, if any, that holds the corresponding page.

• OS also maintains a single free frame list of all frames
in memory that are currently occupied and available
pages.

• Simple paging similar to fixed partitioning but the
different are:
 In paging the partitions are rather small

 Program may occupy more than one partitions and no
need to be contiguous.

52

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

Page Tables for Example

53

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

Paging
• An example is shown in Figure 7.11
• In this example consider 16bit addresses are

used, and the page size is 1K = 1024 bytes.
• The relative address 1502 in binary form is

0000010111011110
• Offset need 10 bits (m, rightmost) and page

number 6 bits (n, leftmost). So the program can
consist a maximum 26 = 64 pages of 1Kb each.

• As figure 7.11b shows address 1502
(0000010111011110) correspond to an offset of
478(0111011110) and page number 1 (000001).

May 2014 Systems and Networking 54

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

Paging

• Consider an address of n+m bits, where the
leftmost n bits are the page number and the
rightmost m bits are the offset. From the example
n=6 and m=10.

• The following steps are needed for address
translation:
1. Extract the page number as the leftmost n bits of the
logical address.

2. Use the page number as an index into the process
page table to find the frame number k.

55

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

Paging

3. The starting physical address of the frame is

• k X 2m, and the physical address of the referenced byte
is that number plus the offset.

• This physical address need not be calculated; it is easily
constructed by appending the frame number to the
offset.

• From our example the logical address is
0000010111011110, which page number 1
and offset 478.

56

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

Paging

• Suppose that this page is residing in memory
frame 6 = binary 000110.

• Then the physical address is frame number 6,
offset 478 = 0001100111011110 (Fig 7 12a)

57

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

Paging

• Summarize for simple paging:
 Memory is divided into small equal-size frames.

 Each process is divided into frame-size pages

 Smaller processes require fewer pages larger
pages, processes require more.

 When a process is brought in, all of its pages are
loaded into available frames, and a page table is
set up.

 This approach solves many problems inherentin
partitioning.

58

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

59

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

Segmentation
• Alternative way is to subdivided user program

into segments.
• All segments of all programs do not have to be of

the same length, but there is a maximum length.
• Addressing consist of two parts - a segment

number and an offset
• Since segments are not equal, segmentation is

similar to dynamic partitioning the different is
that with segmentation a program may occupy
more than one partition and these partitions
need not be contiguous.

60

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

Segmentation

• Segmentation eliminates internal fragmentation
but suffer from external fragmentation.

• However because a process is broken up into a
number of smaller pieces, the external
fragmentation should be less.

• Paging is invisible for the programmer but
segmentation is visible and is provided as a
convenience for organizing programs and data.

61

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

Segmentation

• Programmer or compiler will assign programs
and data to different segments

• For modular programming, the program or
data may be further broken down into
multiple segments

62

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

Segmentation

• The principal inconvenience is that the
programmer must be aware of the maximum
segment size limitation.

• For unequal size segments there is no simple
relationship between logical addresses and
physical addresses.

• Analogous form paging, a simple segmentation
scheme would make use of segment table for
each process and a list of free blocks of memory.

63

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

Segmentation

• Each segment table entry would have to give the
starting address in memory of the corresponding
segment.

• The entry should also provide the length of the
segment, to assure that invalid addresses are not
used.

• When process enters the Running state, the
address of its segment table is loaded into a
special register used by the memory
management hardware.

64

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

Segmentation
• Consider and address of n + m bits, where the leftmost

n bits are segment number and the rightmost m bits
are the offset.

• In our example (Fig. 7.11c), n=4 and m=12. Thus

• the maximum segment size is 212 = 4096.

• The following steps are needed for address translation:
1. Extract the segment number as the leftmost n bits of the

logical address.

2. Use the segment number as an index into the process
segment table to find the starting physical address of the
segment.

65

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

Segmentation

3. Compare the offset, expressed in the rightmost m
bits, to the length of the segment. If the offset
greater than the length, the address is invalid.

4. The desired physical address is the sum of the
starting physical address of the segment plus the
offset.

• Example the logical address
0001001011110000, which is segment
number 1 (0001) and offset 75
(001011110000).

66

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

Segmentation

• Suppose that this segment is residing in
memory starting at physical address
0010000000100000.

• Then the physical address is (Fig 7.12b)

010000000100000 + 001011110000

= 0010001100010000.

67

CGMB143 COMPUTER SYSTEM

COMPUTER ORGANIZATIONCMPD223

Segmentation

• Summarization for simple segmentation:

 A process is divided into a number of segments
which need not be equal size.

 When a process brought in, all of its segments are
loaded into available regions of memory, and a
segment table is setup.

68

CGMB143 COMPUTER SYSTEM

