Digital Logic Design (CSNB163)

Module 1

Number Systems

- Number system consists of an ordered set of symbols called digit.
- The radix (r) or base is the total number of digits allowed in the system.
- Common number systems includes
 - decimal (r = 10) {0,1,2,3,4,5,6,7,8,9}
 - binary (r = 2) {0,1}
 - octal (r = 8) {0,1,2,3,4,5,6,7}
 - hexadecimal (r = 16) {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}

Number Representations

- A number may appear in 2 parts:
 - integer part

fractional part

which are separated by radix point (.).

- Numbers can be represented in 2 notations:
 - Position notation

123.45

Polynomial notation

 $1x10^{2} + 2x10^{1} + 3x10^{0} + 4x10^{-1} + 5x10^{-2}$

Arithmetic Operation

- Arithmetic operations can be performed on numbers regardless of their radixes.
- Occurrence of the control of the
 - Addition (+)
 - Subtraction (-)
 - Multiplication (×)
 - Division (÷)

Decimal
Binary
Octal
Hexadecimal

Arithmetic Operation (Addition)

Decimal

$$1234_{10} + \underline{4567}_{10} \\ \underline{5801}_{10}$$

Binary

```
10011010010_{2} + \underline{1000111010111_{2}} \\ \underline{1011010101001_{2}}
```

Octal

$$2322_{8} + 10727_{8} \\ 13251_{8}$$

• Hexadecimal

$$4D2_{16} + 11D7_{16}$$
 $16A9_{16}$

Arithmetic Operation (Subtraction)

Decimal

4567₁₀

- <u>1234</u>₁₀

<u>3333</u>₁₀

Binary

 $1000111010111_{2} - 10011010010_{2}$ 110100000101_{2}

Octal

10727₈

-<u>2322</u>8

<u>6405</u>₈

Hexadecimal

11D7₁₆

- <u>4D2₁₆</u>

D05₁₆

Arithmetic Operation (Multiplication)

• Decimal

$$4567_{10}$$
 $\times 2_{10}$
 9134_{10}

Binary

$$1000111010111_{2}$$
 $\times 10_{2}$
 10001110101110_{2}

Octal

$$10727_{8}$$
 $\times 2_{8}$
 21656_{8}

• Hexadecimal

$$11D7_{16}$$
 $\times 2_{16}$
 $23AE_{16}$

Arithmetic Operation (Division)

Decimal

$$\begin{array}{r}
1234_{10} \\
\div \underline{2_{10}} \\
\underline{617_{10}}
\end{array}$$

Binary

$$\begin{array}{c} 10011010010_{2} \\ \div \underline{10_{2}} \\ \underline{1001101001_{2}} \end{array}$$

Octal

$$2322_{8}$$
 \div 2_{8} 1151_{8}

Hexadecimal

$$4D2_{16}$$
 $\div 2_{16}$
 269_{16}

Number Base Conversion

- To convert a number in one base to another.
- May involve conversion of fractional parts.

Decimal
Binary
Octal
Hexadecimal

Decimal
Binary
Octal
Hexadecimal

- There are many conversion techniques, however we shall concentrate on:
 - Radix based conversion
 - Grouping based conversion

Radix Based Conversion

- Recaps: A number may appear in 2 parts:
 - integer part

- fractional part
- which are separated by radix point (.).
- For radix based conversion:
 - integer part divide by radix
 - fractional part multiply by radix

Radix Based Conversion (Example 1)

Convert 1234 decimal into binary

Radix 2

Divide by radix 2

Answer

100110100102

Radix Based Conversion (Example 2)

Convert 1234 decimal into octal

Radix Based Conversion (Example 3)

Convert 1234 decimal into hexadecimal

Radix Based Conversion (Example 4)

Convert 0.6875 decimal into binary

Radix 2

Multiply by radix 2

Fraction	Radix	Total (Fraction x Radix)	Intege	r F	raction
0.6875	2	1.375	1		0.375
0.375	2	0.75	0		0.75
0.75	2	1.5	1		0.5
0.5	2	1	1		0

Answer

0.10112

Radix Based Conversion (Example 5)

Convert 0.513₁₀ to base 16 (up to 4 fractional point)

Radix 16

Multiply by radix 16

Fraction		Total (Fraction x Radix)	Intege		Fraction
0.513	16	8.208		8	0.208
0.208	16	3.328		3	0.328
0.328	16	5.248		5	0.248
0.248	16	3.968		3	0.968

Answer

0.8353₁₆

Grouping Based Conversion

- Recaps: A number may appear in 2 parts:
 - integer part

- fractional part
- which are separated by radix point (.).
- For radix based conversion:
 - integer part divide by radix
 - fractional part multiply by radix

Digital Logic Design (CSNB163)

End of Module 1