
Module 11 



 In Module 9, we have been introduced to the 

concept of combinational logic circuits through 

the examples of binary adders. 

Meanwhile, in Module 10, we have learnt about 

two more examples of combinational logic 

circuits: 
• Binary multiplier 

• Magnitude comparator 

 In this module, we shall study about two more 

examples of combinational logic circuits: 
• Binary decoder 

• Binary encoder 

 



A binary decoder is a combinational circuit that 

converts binary information from n input 

lines to a maximum of 2n unique output lines. 

 For example, a decoder that converts binary 

representation in: 
• 2 bits into 22 = 4, 

• 3 bits into 23 = 8, 

• 4 bits into 24 =16 unique output lines 

 If the n-bit coded information has unused 

combinations, the decoder may have fewer 

than 2n outputs. For example, a BCD decoder of 

4 bits input, only produces 10 outputs.  

 



 The truth table for a 3-to-8 decoder whereby: 
• 3 bit  inputs (x, y, z) are decoded into 

• 8 outputs (D0, D1, D2, D3, D4, D5, D6, D7}  

• where each output representing one of the minterm. 

 x y z D0 D1 D2 D3 D4 D5 D6 D7 

0 0 0 1 0 0 0 0 0 0 0 

0 0 1 0 1 0 0 0 0 0 0 

0 1 0 0 0 1 0 0 0 0 0 

0 1 1 0 0 0 1 0 0 0 0 

1 0 0 0 0 0 0 1 0 0 0 

1 0 1 0 0 0 0 0 1 0 0 

1 1 0 0 0 0 0 0 0 1 0 

1 1 1 0 0 0 0 0 0 0 1 

D0 = x’.y’.z’ 



 The logic circuit 

diagram: 

• For each possible 

input combination,  

7 outputs are equal 

to 0 and only one 

equal to 1.  

• The output whose 

value is equal to 1 

represents the 

equivalent 

minterm. 

 



 In the previous examples, the outputs are not 

complemented, whereby AND gates are used.  

We can also use complemented outputs for the 3 

to 8 decoder, as such NAND gates can be used. 
x y z D0 D1 D2 D3 D4 D5 D6 D7 

0 0 0 0 1 1 1 1 1 1 1 

0 0 1 1 0 1 1 1 1 1 1 

0 1 0 1 1 0 1 1 1 1 1 

0 1 1 1 1 1 0 1 1 1 1 

1 0 0 1 1 1 1 0 1 1 1 

1 0 1 1 1 1 1 1 0 1 1 

1 1 0 1 1 1 1 1 1 0 1 

1 1 1 1 1 1 1 1 1 1 0 

Here, we use 

MAXTERM 

instead of 

minterm 

D0 = x + y + z 

D0 = x’’+y’’+z’’ 

D0 = (x’.y’.z’)’ 



Decoders may include one or more enable 

inputs to control the circuit operation. 

 E.g. 2-to-4 line decoder with an enable input 

and complimented outputs: 

E A B D0 D1 D2 D3 

1 X X 1 1 1 1 

0 0 0 0 1 1 1 

0 0 1 1 0 1 1 

0 1 0 1 1 0 1 

0 1 1 1 1 1 0 

In general, the decoder can be activated when the enable is 1 or 0. 

In this case, the decoder is activate when enable is 0. 



Decoders with enable inputs can be connected 

to form a larger decoder circuit.  

 E.g.: two 3-to-8 line decoders (uncomplemented 

outputs)can be connected to form a 4-to-16 line 

decoder. 

 

wxyz D(0-7) wxyz D(8-15) 

0000 10000000 1000 10000000 

0001 01000000 1001 01000000 

0010 00100000 1010 00100000 

0011 00010000 1011 00010000 

0100 00001000 1100 00001000 

0101 00000100 1101 00000100 

0110 00000010 1110 00000010 

0111 00000001 1111 00000001 



 Recapss from Module 5 - any logic circuit design 

can be represented in Sum of Mintems or 

Product of Maxterms Boolean Expression.  

We have also learned that: 
• each output of a decoder (of a uncomplemented outputs 

type) representing one minterm 

• each output of a decoder (of a complemented outputs 

type) representing one maxterm 

 Thus, a logic circuit can be built using decoder: 
• A decoder with uncomplemented outputs +  OR gates = 

Sum of Minterms 

• A decoder with complemented outputs +  AND gates = 

Product of Maxterms 

 



 Recapss from Module 9, a full adder properties: 

 The input is three binary variables (a, b, cin being the 

input carry) 

 The output is two binary variables (sum, cout being the 

output carry) 

 
Sum(a, b, cin) =  

∑(m1, m2, m4, m7)  

 

Cout(a, b, cin) =  

∑(m3, m5, m6, m7)  



 Encoder is a digital circuit that performs the 

inverse operation of a decoder.  

An encoder has 2n input lines and n output 

lines. 

 The output line generates the binary codeword 

corresponding to the input value. 

 For example: 
• octal to binary encoder (8 to 3 encoder) 

• hexadecimal to binary encoder(16 to 4 encoder) 



 Truth  

 table: 

 

 

 

 

 

 

 The encoder can be implemented with OR gates 

which boolean expressions can determined 

directly from the truth table. 

D0 D1 D2 D3 D4 D5 D6 D7 x y z 

1 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 1 

0 0 1 0 0 0 0 0 0 1 0 

0 0 0 1 0 0 0 0 0 1 1 

0 0 0 0 1 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 1 0 1 

0 0 0 0 0 0 1 0 1 1 0 

0 0 0 0 0 0 0 1 1 1 1 

x = D4 + D5 + D6 + D7 

y = D2 + D3 + D6 + D7 

z = D1 + D3 + D5 + D7 



 Problem: 
• The problem with the previous design is that only one of 

the 8 inputs can have the value of ‘1’ at a given time.  

• If more than one are 1 simultaneously, the output produces 

an undefined combination. 

 Solution: 
• This give rise to the design of a priority encoder that 

includes priority function. 

• The operation of the priority encoder is such that if more 

than 1 inputs are equal to 1 at the same time, the input 

having the highest priority will take the precedence. 

 
 



 Truth table: 

 

 

 

 

 The third output, V is the valid bit indicator that 

is set to 1 when one or more inputs are equal to 

1, otherwiseV is equal to 0. 

D3 has highest priority. When D3 is 1, the output 

for x, y will be 11 regardless other inputs.  

D0 has lowest priority. 

 

D0 D1 D2 D3 x y V 

0 0 0 0 X X 0 

1 0 0 0 0 0 1 

X 1 0 0 0 1 1 

X X 1 0 1 0 1 

X X X 1 1 1 1 



 Truth table: 

 

 

 

 

 The third output, V is the valid bit indicator that 

is set to 1 when one or more inputs are equal to 

1, otherwiseV is equal to 0. 

D3 has highest priority. When D3 is 1, the output 

for x, y will be 11 regardless other inputs.  

D0 has lowest priority. 

 

D0 D1 D2 D3 x y V 

0 0 0 0 X X 0 

1 0 0 0 0 0 1 

X 1 0 0 0 1 1 

X X 1 0 1 0 1 

X X X 1 1 1 1 



V is 1 whenever any of the inputs are 1.  

 Thus V can be derived directly from the truth 

table using OR gates that checks if any of the 

inputs are 1: 

 

 

 

 

 

Whereas, the simplified Boolean equations for x 

and y can be derived using Karnaugh Maps. 

V = D0 + D1 + D2 + D3 

D0 D1 D2 D3 V 

0 0 0 0 0 

1 0 0 0 1 

X 1 0 0 1 

X X 1 0 1 

X X X 1 1 



Deriving Boolean expression for x: 

       D2D3 

D0D1 

 

00 

 

01 

 

11 

 

10 

00 X 1 1 1 

01 1 1 1 

11 1 1 1 

10 1 1 1 

D0 D1 D2 D3 x 

0 0 0 0 X 

1 0 0 0 0 

X 1 0 0 0 

X X 1 0 1 

X X X 1 1 

Group 1: D3  

Group 2:  

D2  

Thus simplified x = D2 + D3  



Deriving Boolean expression for y: 

       D2D3 

D0D1 

 

00 

 

01 

 

11 

 

10 

00 X 1 1 

01 1 1 1 

11 1 1 1 

10 1 1 

D0 D1 D2 D3 y 

0 0 0 0 X 

1 0 0 0 0 

X 1 0 0 1 

X X 1 0 0 

X X X 1 1 

Group 1: 

D1 D2  

Group 2: D3  

Thus simplified y = D21D2 + D3  



End of Module 11 


