
Module 11

 In Module 9, we have been introduced to the

concept of combinational logic circuits through

the examples of binary adders.

Meanwhile, in Module 10, we have learnt about

two more examples of combinational logic

circuits:
• Binary multiplier

• Magnitude comparator

 In this module, we shall study about two more

examples of combinational logic circuits:
• Binary decoder

• Binary encoder

A binary decoder is a combinational circuit that

converts binary information from n input

lines to a maximum of 2n unique output lines.

 For example, a decoder that converts binary

representation in:
• 2 bits into 22 = 4,

• 3 bits into 23 = 8,

• 4 bits into 24 =16 unique output lines

 If the n-bit coded information has unused

combinations, the decoder may have fewer

than 2n outputs. For example, a BCD decoder of

4 bits input, only produces 10 outputs.

 The truth table for a 3-to-8 decoder whereby:
• 3 bit inputs (x, y, z) are decoded into

• 8 outputs (D0, D1, D2, D3, D4, D5, D6, D7}

• where each output representing one of the minterm.

 x y z D0 D1 D2 D3 D4 D5 D6 D7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

D0 = x’.y’.z’

 The logic circuit

diagram:

• For each possible

input combination,

7 outputs are equal

to 0 and only one

equal to 1.

• The output whose

value is equal to 1

represents the

equivalent

minterm.

 In the previous examples, the outputs are not

complemented, whereby AND gates are used.

We can also use complemented outputs for the 3

to 8 decoder, as such NAND gates can be used.
x y z D0 D1 D2 D3 D4 D5 D6 D7

0 0 0 0 1 1 1 1 1 1 1

0 0 1 1 0 1 1 1 1 1 1

0 1 0 1 1 0 1 1 1 1 1

0 1 1 1 1 1 0 1 1 1 1

1 0 0 1 1 1 1 0 1 1 1

1 0 1 1 1 1 1 1 0 1 1

1 1 0 1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 1 1 1 0

Here, we use

MAXTERM

instead of

minterm

D0 = x + y + z

D0 = x’’+y’’+z’’

D0 = (x’.y’.z’)’

Decoders may include one or more enable

inputs to control the circuit operation.

 E.g. 2-to-4 line decoder with an enable input

and complimented outputs:

E A B D0 D1 D2 D3

1 X X 1 1 1 1

0 0 0 0 1 1 1

0 0 1 1 0 1 1

0 1 0 1 1 0 1

0 1 1 1 1 1 0

In general, the decoder can be activated when the enable is 1 or 0.

In this case, the decoder is activate when enable is 0.

Decoders with enable inputs can be connected

to form a larger decoder circuit.

 E.g.: two 3-to-8 line decoders (uncomplemented

outputs)can be connected to form a 4-to-16 line

decoder.

wxyz D(0-7) wxyz D(8-15)

0000 10000000 1000 10000000

0001 01000000 1001 01000000

0010 00100000 1010 00100000

0011 00010000 1011 00010000

0100 00001000 1100 00001000

0101 00000100 1101 00000100

0110 00000010 1110 00000010

0111 00000001 1111 00000001

 Recapss from Module 5 - any logic circuit design

can be represented in Sum of Mintems or

Product of Maxterms Boolean Expression.

We have also learned that:
• each output of a decoder (of a uncomplemented outputs

type) representing one minterm

• each output of a decoder (of a complemented outputs

type) representing one maxterm

 Thus, a logic circuit can be built using decoder:
• A decoder with uncomplemented outputs + OR gates =

Sum of Minterms

• A decoder with complemented outputs + AND gates =

Product of Maxterms

 Recapss from Module 9, a full adder properties:

 The input is three binary variables (a, b, cin being the

input carry)

 The output is two binary variables (sum, cout being the

output carry)

Sum(a, b, cin) =

∑(m1, m2, m4, m7)

Cout(a, b, cin) =

∑(m3, m5, m6, m7)

 Encoder is a digital circuit that performs the

inverse operation of a decoder.

An encoder has 2n input lines and n output

lines.

 The output line generates the binary codeword

corresponding to the input value.

 For example:
• octal to binary encoder (8 to 3 encoder)

• hexadecimal to binary encoder(16 to 4 encoder)

 Truth

 table:

 The encoder can be implemented with OR gates

which boolean expressions can determined

directly from the truth table.

D0 D1 D2 D3 D4 D5 D6 D7 x y z

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1 1 1 1

x = D4 + D5 + D6 + D7

y = D2 + D3 + D6 + D7

z = D1 + D3 + D5 + D7

 Problem:
• The problem with the previous design is that only one of

the 8 inputs can have the value of ‘1’ at a given time.

• If more than one are 1 simultaneously, the output produces

an undefined combination.

 Solution:
• This give rise to the design of a priority encoder that

includes priority function.

• The operation of the priority encoder is such that if more

than 1 inputs are equal to 1 at the same time, the input

having the highest priority will take the precedence.

 Truth table:

 The third output, V is the valid bit indicator that

is set to 1 when one or more inputs are equal to

1, otherwiseV is equal to 0.

D3 has highest priority. When D3 is 1, the output

for x, y will be 11 regardless other inputs.

D0 has lowest priority.

D0 D1 D2 D3 x y V

0 0 0 0 X X 0

1 0 0 0 0 0 1

X 1 0 0 0 1 1

X X 1 0 1 0 1

X X X 1 1 1 1

 Truth table:

 The third output, V is the valid bit indicator that

is set to 1 when one or more inputs are equal to

1, otherwiseV is equal to 0.

D3 has highest priority. When D3 is 1, the output

for x, y will be 11 regardless other inputs.

D0 has lowest priority.

D0 D1 D2 D3 x y V

0 0 0 0 X X 0

1 0 0 0 0 0 1

X 1 0 0 0 1 1

X X 1 0 1 0 1

X X X 1 1 1 1

V is 1 whenever any of the inputs are 1.

 Thus V can be derived directly from the truth

table using OR gates that checks if any of the

inputs are 1:

Whereas, the simplified Boolean equations for x

and y can be derived using Karnaugh Maps.

V = D0 + D1 + D2 + D3

D0 D1 D2 D3 V

0 0 0 0 0

1 0 0 0 1

X 1 0 0 1

X X 1 0 1

X X X 1 1

Deriving Boolean expression for x:

 D2D3

D0D1

00

01

11

10

00 X 1 1 1

01 1 1 1

11 1 1 1

10 1 1 1

D0 D1 D2 D3 x

0 0 0 0 X

1 0 0 0 0

X 1 0 0 0

X X 1 0 1

X X X 1 1

Group 1: D3

Group 2:

D2

Thus simplified x = D2 + D3

Deriving Boolean expression for y:

 D2D3

D0D1

00

01

11

10

00 X 1 1

01 1 1 1

11 1 1 1

10 1 1

D0 D1 D2 D3 y

0 0 0 0 X

1 0 0 0 0

X 1 0 0 1

X X 1 0 0

X X X 1 1

Group 1:

D1 D2

Group 2: D3

Thus simplified y = D21D2 + D3

End of Module 11

