Digital Logic Design (CSNB163)

Module 3

Binary Logic

• Binary logic consists of :

logic variables

- designated by alphabet letters, e.g. A, B, C... x,
 y, z, etc.
- have ONLY 2 possible values: 1 or 0

logic operators

- 3 basic logical operators representing 3 basic logical operations: AND, OR and NOT
- The overall equation made up a Boolean Equation

Logic Gates

- Logic gates are electronic circuits that operate on one or more binary input signals to produce a binary output signal.
- Each logic gate represents a single processing unit that performs binary logic operations

Truth Tables

- Truth table is a table of all possible combinations of the input binary variables
- If there are n input variables, there are in total
 2ⁿ possible combination
- Truth tables show the relationship between the input binary values that the output binary result of the operation

Timing Diagram

- Timing diagram is a graphical representation that describe the relationship between input(s) and output signals in a digital circuit system.
- In actual implementation, the input and output signals are electrical signals that can be categorized into binary logic state of 1 or 0 based the defined range of voltages associated with each state.
- Input signal can either static (e.g. logic state 0 if grounded) or dynamic (e.g. if received input from flip flops)

Binary Logic Operation (AND)

- Symbol dot or none
- Boolean EquationA . B = Y or AB = Y
- Output variable is 1 if all input variables is 1
- Logic Gate

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

Binary Logic Operation (AND)

- Boolean EquationA.B.C=Y
- Logic Gate

A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Binary Logic Operation (OR)

- Symbol plus
- Boolean Equation A + B = Y
- Output variable is 1 if any input variables is 1
- Logic Gate

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

Binary Logic Operation (OR)

- Boolean Equation A + B + C = Y
- Logic Gate

A	В	С	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Binary Logic Operation (NOT)

- Symbol prime or overbar
 A = Y or A' = Y
- Output variable is always opposite of input variable
- Logic Gate

A	Y
0	1
1	0

Binary Logic Operation (NAND)

- A combination of AND operation followed by NOT operation
- Symbol A.B = Y or AB = Y
- Logic Gate

A	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

Binary Logic Operation (NOR)

- A combination of OR operation followed by NOT operation
- $\frac{\text{Symbol}}{A + B} = Y$
- Logic Gate

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

Binary Logic Operation (XOR)

- Exclusive OR (XOR)
- Symbol
- Boolean ExpressionAB' + A'B = Y
- Logic Gate

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

Binary Logic Operation (XNOR)

- Exclusive NOR (XNOR)
- Symbol (A ⊕ B)'
- Boolean ExpressionAB + A'B' = Y
- Logic Gate

A	В	Y
0	0	1
0	1	0
1	0	0
l	1	1

NAND and NOR gates

- Digital circuits are more frequently constructed with NAND or NOR gates rather than with AND or OR gates.
- The main reason behind this is that NAND and NOR gates are easier to fabricate with electronic components.

XOR gates

- Exclusive OR gates are often used for error detection and correction purposes.
- This is done by using XOR gates in building the parity generator and checker digital logic circuits.

Digital Logic Design (CSNB163)

End of Module 3