
Module 4 



 Boolean Algebra is used to simplify the design 

of digital logic circuits. 

 

 

 

 

 

 The design simplification  are based on: 
• Postulates of Boolean Algebra  

• Basic Property of Boolean Algebra 

• Basic Theorems of Boolean Algebra  

 

 

Complicated 

design with 

many digital 

logic circuits  

Simpler design 

with less digital 

logic circuits 
Boolean Algebra 

Both performs similar function  

but the latter is cheaper 



A two valued Boolean Algebra is defined on a 

set (B) of two elements: 

  

 

  A two valued Boolean Algebra reflects the 

basis for digital logic circuit (i.e. whereby 

digital signals being the IO to the digital logic 

circuit can only be either 0 or 1).  

A two valued Boolean Algebra satisfies: 
• Postulates of Boolean Algebra 

• Basic Property of Boolean Algebra 

• Basic Theorems of Boolean Algebra  

 

B = {0,1} 



Postulate 1: Closure 

 

  The Boolean system is closed with respect to 

binary operator + and . since for every 

possible combination of Boolean values from 

set {1, 0} , it produces a Boolean result from set 

{1, 0}. 

  

 

 



Postulate 2: Identity Element 

 

 The  element 0 is an identity element with 

respect to + operator: 

       

 

 The  element 1 is an identity element with 

respect to . operator: 

    

 

  

 

 

a +  0 = a   

a . 1 = a   



Postulate 3: Commutative 

 

 Commutativity of the + operation 

  

 

 

 Commutativity of the . operation 

 

 

a + b = b + a 

a . b = b . a 



Postulate 4: Associative 

 

 Associativity of the + operation 

  

 

 

  Associativity of the . operation 

 

 

a + (b + c) = (a + b) + c   

a . (b . c) = (a . b) . c 



Postulate 5: Distributive 

 

  Distributivity of the + operation 

  

 

 

  Distributivity of the . operation 

 

 

a + ( b . c) = (a + b) . (a + c)   

a . (b + c) = (a . b) + (a . c) 



Postulate 6: Complement 

  

 For every a in K set, there exists a unique 

element called a’  (complement of a) such that 

 
 

 and    
  

 

 

a + a’ = 1   

a . a’ = 0   



Duality 

  

 If an expression is valid in Boolean Algebra, the 

dual of the expression is also valid. 

  

 The dual expression is done by: 

•  replacing all + operators with . and vice versa 

•  replacing all 1s with 0s and vice versa 

  
 Example   : a + (b . c) = (a + b)  .  (a + c) 

 Thus thorough duality : a  .  (b+c) = (a .   b) + (a  .  c) 

 
 



Theorem 1: Idempotency 

  

 The output value does not change by its input 

multiplication whereby: 

 

 
 

 and based on duality property:   
  

 

 

x + x = x   

x . x = x   



Theorem 2: Null Element 

  

 The output value is not affected by the changes 

in the input value, whereby: 

 

 
 

 and based on duality property:   
  

 

 

x + 1 = 1   

x .  0 = 0  



Theorem 3: Involution 

  

 The double inverse output value of an input is 

equivalent to the input: 

 

 
 

  
 

(x’)’ = x   



Theorem 4: Redundancy 

  

  This theorem is the result of the application of 

several other theorems that eliminates 

redundancy,  whereby: 

 

 
 

 and based on duality property:   
  

 

 

a + (a’  .  b) = a + b  

a  .  (a’ + b) = a . b 



Theorem 4: Redundancy 

  Proving: 

 

 
 

   
  

 

 

a + (a’  .  b)   

= (a + a’)(a + b)   (via Postulate 5: Distributive) 

= (1)(a+b)         (via Postulate 6: Complement) 

= a+ b           (via Postulate 2: Identity Element) 

a b a + (a’ . b) a + b 

0 0 0 + (1 . 0) = 0 0 + 0 = 0 

0 1 0 + (1 . 1) = 1 0 + 1 = 1 

1 0 1 + (0 . 0) = 1 1 + 0 = 1 

1 1 1 + (0 . 1) = 1 1 + 1 = 1 



Theorem 5: DeMorgan’s Law 

  

  This theorem is based on DeMorgan’s Law,  

whereby: 

 

 
 

 and based on duality property:   
  

 

 

(a + b) = a  .  b 

(a  .  b) = a  +  b 



Theorem 6: Absorption 

  

  This theorem is the result of the application of 

several other theorems that neglects a certain 

input variable,  whereby: 

 

 
 

 and based on duality property:   
  

 

 

a + (a . b) = a   

a  .  (a+ b) = a 



Theorem 6: Absorption  

 Proving: 

 

 
 

   
  

 

 

a + (a  .  b)   

= (a . 1) + (a . b)   (via Postulate 2: Identity Element) 

= (a )(1+b)         (via Postulate 5: Distributive) 

= a (1)           (via Theorem 2: Null Element) 

= a   (via Postulate 2: Identity Element) 
 

a b a + (a . b) 

0 0 0 + (0 . 0) = 0 

0 1 0 + (0 . 1) = 0 

1 0 1 + (1 . 0) = 1 

1 1 1 + (1 . 1) = 1 



As mentioned in the introduction, we can use 

Boolean Algebra to simplify the design of 

digital logic circuit.  This is made possible via 

basic postulates, property and theorems of 

Boolean Algebra itself. 

 By simplifying the digital logic design, fewer 

gates ( and wiring) are used to achieve the 

same realization, thus more cost effective.  

However, since Boolean Algebra can be 

simplified in several different ways, there is no 

standard rule to guarantee the final answer.

  

  



 Simplify the following Boolean function  

 

  

 using basic postulates, property and theorems 

of Boolean Algebra.     
  

 

 

x(x’ + y)  

= (x . x’)+(x . y)    (via Postulate 5: Distributive) 

= (0) + (x . y)          (via Postulate 6: Complement) 

= x.y    (via Postulate 2: Identity Element) 

F1  = x(x’ + y) 



 The truth diagram:   
  

 

 

x y F1 = x ( x’ + y) F2 = x . y 

0 0 0 . (1 + 0) = 0 0 .  0 = 0 

0 1 0 . (1 + 1) = 0 0 .  1 = 0 

1 0 1 . (0 + 0) = 0 1 .  0 = 0 

1 1 1 . (0 + 1) = 1 1 .  1 = 1 



F2= x . y 

F1  = x . (x’ + y) 

Same realization of F1 and F2, 

but F2 is simpler with less  

num. of  gates & wiring!! 



 Simplify the following Boolean function  

 

  

 using basic postulates, property and theorems 

of Boolean Algebra.     
  

 

 

x’y’z +  x’yz + xy’  

= (x’ z)(y’ + y) + (xy’)   (via Postulate 5: Distributive) 

= (x’z) + (xy’) = F2         (via Postulate 6: Complement) 

F1  = x’y’z  + x’yz + xy’ 



 The truth diagram:   
  

 

 

x y z F1 = x’y’z + x’yz + xy’ F2 = xy’ + x’z 

0 0 0 1.1.0 + 1.0.0 + 0.1 = 0 0.1 + 1.0 = 0 

0 0 1 1.1.1 + 1.0.1 + 0.1 = 1 0.1 + 1.1 = 1 

0 1 0 1.0.0 + 1.1.0 + 0.0 = 0 0.0 + 1.0 = 0 

0 1 1 1.0.1 + 1.1.1 + 0.0 = 1 0.0 + 1.1 = 1 

1 0 0 0.1.0 + 0.0.0 + 1.1 = 1 1.1 + 0.0 = 1 

1 0 1 0.1.1 + 0.0.1 + 1.1 = 1 1.1 + 0.1 = 1 

1 1 0 0.0.0 + 0.1.0 + 1.0 = 0 1.0 + 0.0 = 0 

1 1 1 0.0.1 + 0.1.1 + 1.0 = 0 1.0 + 0.1 = 0 



F2= (x’z) + (xy’) 

F1  = x’y’z  + x’yz + xy’ 

Same realization of F1 and F2, 

but F2 is simpler with less 

num. of gates & wiring!! 



End of Module 4 


