Digital Logic Design (CSNB163)

Module 6

Digital Logic Design Simplification

- In Module 4, we have learned how to simplify the design of digital logic circuits by manipulating Boolean Algebra. However, this method lacks of standardization.
- There is another alternative of design simplification which is through the use of Karnaugh Map or K-Map.

Complicated design with many digital logic circuits

K-Map Simplification

Simpler design with less digital logic circuits

This method is simpler and more standardized!

Karnaugh Map

- Karnaugh Map (or K-Map) is a 2D pictorial form of a truth table that describes the relationship between input and output variables.
- K-map simplification can be carried out through:
 - Sum of Product simplification
 - Product of Sum simplification
- In this module, we shall only look at the Sum of Product simplification.

SOP - Karnaugh Map Simplification

- In Sum of Product Karnaugh Map simplification, the K-Map is made up of cells representing all possible combination of input variables in minterms format. Each cell is denoted as:
 - 1 for minterm that corresponds to the Boolean equation
 - 0 for minterm that does **NOT correspond** to the Boolean equation
- Simplification is done through grouping of all cell with value '1'

Karnaugh Map Simplification Tips

- Always try to group cells in power of 2 (e.g. 2⁰, 2¹, 2²..etc).
- Group as many cells as possible. The larger the group, the fewer number of input variables.
- Make sure that all minterms with value 'l' is covered!!!
- Sometimes, there may be more than l simplification result.

Karnaugh Map (2 input variables)

- If we have 2 input variables:
 - possible number of combinations $= 2^2 = 4$
 - i.e. 4 possible minterms, thus a K-Map with 4 squares
- E.g.

$$F(x,y) = x'y + xy' + xy'$$

Thus simplified F(x,y) = x + y

Karnaugh Map (3 input variables)

- If we have 3 input variables:
 - possible number of combinations $= 2^3 = 8$
 - i.e. 8 possible minterms, thus a K-Map with 8 squares
- E.g.

$$F(x, y, z) = x'yz' + x'yz + xy'z' + xy'z'$$

Thus simplified F(x, y, z) = xy' + x'y

Karnaugh Map (4 input variables)

- If we have 4 input variables:
 - possible number of combinations $= 2^4 = 16$
 - i.e. 16 possible minterms, thus a K-Map with 16 squares
- E.g.

Group 2: abd

Thus simplified F(a, b, c, d) = a'c'd + abd

 Simplify the following equation using Karnaugh map:

$$F(x, y, z) = x'y'z' + x'yz' + xy'z' + xy'z$$

Thus simplified F(x, y, z) = xy' + x'z'

 Simplify the following equation using Karnaugh map:

$$F(x, y, z) = xy'z' + xy'z + x'yz + xy$$

Thus simplified F(x, y, z) = x + yz

 Simplify the following equation using Karnaugh map:

$$F(a, b, c, d) = a'b'cd + a'b'cd' + ab'c'd' + ab'cd'$$

Thus simplified F(a, b, c, d) = a'b'c + ab'd'

 Simplify the following equation using Karnaugh map:

$$F(a, b, c, d) = a'b'c' + bc'd + ab'c' + a'b'cd' + ab'cd'$$

Thus simplified F(a, b, c, d) = cd' + b'd'

Don't Care Terms

- In some applications, the function is not specified for certain combinations of the variables this combination is known as a 'don't care' term.
- A 'don't care' term maybe assumed to be either 0 or 1.
- An X is used to indicate the 'don't care' function.
- The X can be replaced by either 1 or 0, depending on which combination that gives the simplest expression.

• By using K-map, simplify the following equation: $F(x, y, z) = \sum (5,6,7)$ whereby the 'don't care' terms:

$d(x, y, z) = \sum (3,4)$	d(x,	y , :	z)=	Σ(3,4)
---------------------------	----	----	--------------	-----	----	------

xyz	Designation		
000	m0		
001	ml		
010	m2		
011	m3		
100	m4		
101	m5		
110	m6		
111	m7		

• By using K-map, simplify the following equation: $F(a, b, c, d) = \sum (1,3,7,11,15)$ whereby the 'don't care' terms: $d(a, b, c, d) = \sum (0,2,5)$

abcd	Designation	abcd	Designation	
0000	m0	1000	m8	
0001	ml	1001	m9	
0010	m2	1010	ml0	
0011	m3	1011	mll	
0100	m4	1100	m12	
0101	m5	1101	m13	
0110	m6	1110	ml4	
0111	m7	1111	ml5	

cd	00	01	11	10
00	X	1	1	X
01	0	X	1	0
11	0	0	1	0
10	0	0	1	0

Exercise 6 (Solution 1)

Solution 1

$$F(a, b, c, d) = a'b' + cd$$

Exercise 6 (Solution 2)

Solution 2

Group 2:cd

$$F(a, b, c, d) = a'd + cd$$

Digital Logic Design (CSNB163)

End of Module 6