# Digital Logic Design (CSNB163)

Module 7

# Recaps.. NAND gate

- In Module 3 we have learned about NAND gate it is a combination of AND operation followed by NOT operation
- $\frac{\text{Symbol}}{\text{A} \cdot \text{B}} = \text{Y}$

Logic Gate



Truth table

| A | В | Y |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

# Recaps... NOR gate

- In Module 3 we have learned about NOR gate – it is a combination of OR operation followed by NOT operation

Logic Gate



Truth table

| A | В | Y |
|---|---|---|
| 0 | 0 | I |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |

# Recaps... NAND and NOR gates

- In Module 3, we have also learned that digital circuits are more frequently constructed with NAND or NOR gates rather than with AND or OR gates.
- The main reason behind this is that NAND and NOR gates are easier to fabricate with electronic components.
- NAND and NOR gates are said to be universal gate because any digital logic design can be constructed just by using NAND and NOR gates.

### Universality of NAND gate

- In Module 3, we have learned that digital logic design are derived from 3 basic logic operations namely NOT, AND and OR.
- The universality of NAND gate allows it to represent:
  - NOT operation
  - AND operation
  - OR operation



# Universality of NOR gate

 In Module 3, we have learned that digital logic design are derived from 3 basic logic operations namely NOT, AND and OR.

The universality of NOR gate allows it to

represent:

NOT operation

AND operation

NOR operation

$$x \rightarrow (x + y)']' = x + y$$

# Recaps.. De Morgan's Theorem

 In Module 4, we have learned about DeMorgan's Law, whereby:

$$\overline{(a \cdot b)} = \overline{a} + \overline{b}$$

$$\overline{(a+b)} = \overline{a} \cdot \overline{b}$$

Thus, the following property holds true:

#### NAND Implementation

- Any Sum of Products Boolean expression can be implemented using NAND gates.
- E.g. F = AB + CD + E



• NAND conversion:



#### NOR Implementation

- Any Product of Sum Boolean expression can be implemented using NOR gates.
- E.g. F = (A + B')(A' + B) C'



• NOR conversion:



#### Exercise 1

• Implement the following Boolean equation

$$F = A(CD + B) + BC'$$

using all NAND gates.







#### Wired Logic

- Wired Logic is a form of digital logic in which some logic functions are implemented by directly connecting together the outputs of one or more logic gates.
- Two basic wired logic functions are:
  - AND OR INVERT

    E.g. F = (AB + CD + E)'
  - OR AND INVERT E.g. F = [(A+B) (C+D)E]'

# AND-OR-INVERT Implementation

- It requires a function in sum of products form.
- It requires 2 logic circuit function:
  - (1) AND-NOR

or

(2) NAND-AND

E.g.



# OR-AND-INVERT Implementation

- It requires a function in sum of products form.
- It requires 2 logic circuit function:
  - (1) OR-NAND

or

(2) NOR-OR

E.g.



# Digital Logic Design (CSNB163)

End of Module 7