
Module 8 



 In Module 3, we have 

learned about 

Exclusive OR (XOR) 

gate.  

 Boolean Expression 

  AB’ + A’B = Y 

 also A  B = Y 

  

  

 

 Logic Gate 

 

 

 

 Truth table 

 
A B Y 

0 0 0 

0 1 1 

1 0 1 

1 1 0 



 In Module 3, we have 

learned about 

Exclusive NOR 

(XNOR) gate.  

 Boolean Expression 

 AB + A’B’ = Y 

 also (A  B)’ 

 also (AB’ + A’B)’ = Y 

 Logic Gate 

  

  

 

 Logic Gate 

 

 

 Truth table 

 A B Y 

0 0 1 

0 1 0 

1 0 0 

1 1 1 



 The following identities apply to the XOR 

operation: 
• x  0 = x  

   

• x  1 = x’ 

   

• x  x = 0 

    

• x  x’ = 1 

 

 

 

 

A B Y 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

Proving can be performed  

based on XOR truth table 



 The following identities apply to the XOR 

operation: 
• A  B = B  A  

 Proving based on Postulates 3 – Commutative 

 Thus, the two inputs to an XOR can be interchanged! 

 

• (A  B)  C = A  (B  C)  

 Proving based on Postulate 4 – Associative 

 Thus, a three input XOR can be expressed in any manner 

with or without parenthesis.  

 

 

   

 



 The following identities apply to the XOR 

operation: 
• x  y’ = x’  y = (x  y)’ 

 Proving  

 x  y = x’y + xy’ thus x  y’ = x’y’ + xy’’= x’y’ + xy 

 x  y = x’y + xy’ thus x’  y = x’’y + x’y’= xy + x’y’ 

 xy + x’y’ = (x  y)’ – see XNOR 

   

 

 

 

 

 



 XOR gates are difficult to be fabricated.  

Most often we implement XOR using: 
• basic gates 

 

 

• NAND gates 

xy’ + x’y = [xy’+xx’]+ [x’y+yy’] 

                = x(x’+y’)+y(x’+y’) 

 = x(x.y)’ + y(x.y)’  DeMorgan’s 

(x’)’ = x Involution 



 XOR can be represented in sum of minterms for 

any number of inputs: 
• 2 inputs 

 

• 3 inputs 

 

 

   

 

 

 

 

 

x  y = x’y + xy’ 

x  y  z  = (x  y) z 

If o = (x  y) = x’y + xy’ 

 o’ = (x  y)’ = xy + x’y’  

So, x  y  z  = (x  y) z = o z 

           = o’z + oz’ 

  = (xy + x’y’ )z + (x’y + xy’ )z’ 

  = xyz + x’y’z + x’yz’ + xy’z’ 

  = ∑(m7, m1, m2, m4)  

  = ∑(m1, m2, m4, m7) -- rearrange  



Derive the Sum of Minterms for: 
 

 

   

 

 

 

 

 

F(a, b, c, d) = a  b  c  d 

a b c d = (a b)  (c d) 

If x  = a b   = a’b + ab’ 

  x’ = (a b)’  = ab + a’b’ 

If y = c d   = c’d + cd’ 

  y’ = (c d)’  = cd + c’d’ 

a b c d = x  y 

  = x’y + xy’ 

  = (ab + a’b’) (c’d + cd’) + (a’b + ab’) (cd + c’d’) 

  =abc’d+abcd’+a’b’c’d+a’b’cd’+a’bcd+a’bc’d’+ab’cd+ab’c’d’ 

  =∑(m13,  m14, m1, m2, m7, m4, m11, m8) 

  = ∑(m1, m2, m4, m7, m8, m11, m13, m14) -- rearrange 



Odd function is a function that ONLY returns the 

value ‘1’ when: 
•   n is odd whereby n is the total number of input signals 

with value ‘1’  

 XOR of 3 or more input variables makes an odd 

function.  
 E.g.    

 

 

 

 

 

F(x, y, z) = x y z  = ∑(m1, m2, m4, m7) 

   = x’y’z + x’yz’ + xy’z’ + xyz 

            yz 

x 

 

00 

 

01 

 

11 

 

10 

0 1 1 

1 1 1 

n = 1 

n = 3 

n = 1 

n = 1 



 Prove that the given expression is an odd 

function using a truth table. Derive the K-map.  
 

 

   

 

 

 

 

 

F = a  b  c  d = ∑(m1, m2, m4, m7, m8, m11, m13, m14)  

a b c d F n 

0 0 0 0 0 0 

0 0 0 1 1 1 

0 0 1 0 1 1 

0 0 1 1 0 2 

0 1 0 0 1 1 

0 1 0 1 0 2 

0 1 1 0 0 2 

0 1 1 1 1 3 

a b c d F n 

1 0 0 0 1 1 

1 0 0 1 0 2 

1 0 1 0 0 2 

1 0 1 1 1 3 

1 1 0 0 0 2 

1 1 0 1 1 3 

1 1 1 0 1 3 

1 1 1 1 0 4 



 K-map:  
 

 

   

 

 

 

 

 

F = a  b  c  d = ∑(m1, m2, m4, m7, m8, m11, m13, m14)  

           cd 

ab 

 

00 

 

01 

 

11 

 

10 

00 1 1 

01 1 1 

11 1 1 

10 1 1 



 Even function is a function that ONLY returns the 

value ‘1’ when: 
•   n is even whereby n is the total number of input 

signals with value ‘1’  

 The invert of XOR of 3 or more input variables 

makes an even function.  
 E.g.    

 

 

 

 

 

F(x, y, z) =(x y z)’ = ∑(m0, m3, m5, m6) 

   = x’y’z’ + xy’z’ + x’yz’ + x’y’z 

            yz 

x 

 

00 

 

01 

 

11 

 

10 

0 1 1 

1 1 1 

n = 2 

n = 2 

n = 2 

n = 0 



Derive the sum of minterms for the given 

expression and its K-map:  
 

 

   

 

 

 

 

 

F = (a  b  c  d)’  

           cd 

ab 

 

00 

 

01 

 

11 

 

10 

00 1 1 

01 1 1 

11 1 1 

10 1 1 

If F1 = (a  b  c  d) 

= ∑(m1, m2, m4, m7, m8, m11, m13, m14) 

 

Then F = (a  b  c  d)’ = F1’ 

= ∑(m0, m3, m5, m6, m9, m10, m12, m15) 



 Recaps…  
• XOR of 3 and more inputs makes an odd function 

• The invert of XOR of 3 and more inputs makes an even 

function 

 These properties of XOR are used to build 

circuits to provide for error detection and 

correction.  

 This can be accomplished through parity 

generator and checker. 
• Parity generator: a circuit that produces parity bit(s) – 

often resides at transmitter 

• Parity checker:  a circuit that checks the parity at receiver  

   

 



A parity bit is an extra bit included in the 

codeword to make the n (total number of ‘1’s) 

either odd or even. 

An even parity generator utilizes odd function 

to make the number of ‘1’s even 

 (vice versa). 

 E.g.    

 

 

 

 

 

x y z P 

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 0 

1 1 1 1 

P = x y z = ∑(m1, m2, m4, m7) 



Design a circuit for an odd parity generator P 

for three  input variable x, y, z.  Derive the truth 

table.  
 

 

   

 

 

 

 

 

x y z P 

0 0 0 1 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 0 

P = (x y z)’ = ∑(m0, m3, m5, m6) 



 If at the transmitter for every 3 data (x, y, z) bits, 

1 parity (P) bit are constructed for every 

codeword using even parity generator, then 

the receiver must also be of an even parity 

checker consists of four input variables (x, y, z 

and P). 

An even parity checker utilizes odd function to 

make the number of ‘1’s even(vice versa). 

 The output of the parity checker denoted by C 

indicates: 
• No error if C = 0 

• Error if  C = 1 

 



 Example below describes a pair of parity 

generator and checker: 

 

 

 

 

 

 

 

 
• If 1100 is received; C = 0 no error. 

• If 1101 is received; C = 1 ERROR! 

 

Parity Generator:  

P= x y z  

Parity Checker: 

 C= x y z   P  



End of Module 8 


