
Module 8

 In Module 3, we have

learned about

Exclusive OR (XOR)

gate.

 Boolean Expression

 AB’ + A’B = Y

 also A  B = Y

 Logic Gate

 Truth table

A B Y

0 0 0

0 1 1

1 0 1

1 1 0

 In Module 3, we have

learned about

Exclusive NOR

(XNOR) gate.

 Boolean Expression

 AB + A’B’ = Y

 also (A  B)’

 also (AB’ + A’B)’ = Y

 Logic Gate

 Logic Gate

 Truth table

 A B Y

0 0 1

0 1 0

1 0 0

1 1 1

 The following identities apply to the XOR

operation:
• x  0 = x

• x  1 = x’

• x  x = 0

• x  x’ = 1

A B Y

0 0 0

0 1 1

1 0 1

1 1 0

Proving can be performed

based on XOR truth table

 The following identities apply to the XOR

operation:
• A  B = B  A

 Proving based on Postulates 3 – Commutative

 Thus, the two inputs to an XOR can be interchanged!

• (A  B)  C = A  (B  C)

 Proving based on Postulate 4 – Associative

 Thus, a three input XOR can be expressed in any manner

with or without parenthesis.

 The following identities apply to the XOR

operation:
• x  y’ = x’  y = (x  y)’

 Proving

 x  y = x’y + xy’ thus x  y’ = x’y’ + xy’’= x’y’ + xy

 x  y = x’y + xy’ thus x’  y = x’’y + x’y’= xy + x’y’

 xy + x’y’ = (x  y)’ – see XNOR

 XOR gates are difficult to be fabricated.

Most often we implement XOR using:
• basic gates

• NAND gates

xy’ + x’y = [xy’+xx’]+ [x’y+yy’]

 = x(x’+y’)+y(x’+y’)

 = x(x.y)’ + y(x.y)’ DeMorgan’s

(x’)’ = x Involution

 XOR can be represented in sum of minterms for

any number of inputs:
• 2 inputs

• 3 inputs

x  y = x’y + xy’

x  y  z = (x  y) z

If o = (x  y) = x’y + xy’

 o’ = (x  y)’ = xy + x’y’

So, x  y  z = (x  y) z = o z

 = o’z + oz’

 = (xy + x’y’)z + (x’y + xy’)z’

 = xyz + x’y’z + x’yz’ + xy’z’

 = ∑(m7, m1, m2, m4)

 = ∑(m1, m2, m4, m7) -- rearrange

Derive the Sum of Minterms for:

F(a, b, c, d) = a  b  c  d

a b c d = (a b)  (c d)

If x = a b = a’b + ab’

 x’ = (a b)’ = ab + a’b’

If y = c d = c’d + cd’

 y’ = (c d)’ = cd + c’d’

a b c d = x  y

 = x’y + xy’

 = (ab + a’b’) (c’d + cd’) + (a’b + ab’) (cd + c’d’)

 =abc’d+abcd’+a’b’c’d+a’b’cd’+a’bcd+a’bc’d’+ab’cd+ab’c’d’

 =∑(m13, m14, m1, m2, m7, m4, m11, m8)

 = ∑(m1, m2, m4, m7, m8, m11, m13, m14) -- rearrange

Odd function is a function that ONLY returns the

value ‘1’ when:
• n is odd whereby n is the total number of input signals

with value ‘1’

 XOR of 3 or more input variables makes an odd

function.
 E.g.

F(x, y, z) = x y z = ∑(m1, m2, m4, m7)

 = x’y’z + x’yz’ + xy’z’ + xyz

 yz

x

00

01

11

10

0 1 1

1 1 1

n = 1

n = 3

n = 1

n = 1

 Prove that the given expression is an odd

function using a truth table. Derive the K-map.

F = a  b  c  d = ∑(m1, m2, m4, m7, m8, m11, m13, m14)

a b c d F n

0 0 0 0 0 0

0 0 0 1 1 1

0 0 1 0 1 1

0 0 1 1 0 2

0 1 0 0 1 1

0 1 0 1 0 2

0 1 1 0 0 2

0 1 1 1 1 3

a b c d F n

1 0 0 0 1 1

1 0 0 1 0 2

1 0 1 0 0 2

1 0 1 1 1 3

1 1 0 0 0 2

1 1 0 1 1 3

1 1 1 0 1 3

1 1 1 1 0 4

 K-map:

F = a  b  c  d = ∑(m1, m2, m4, m7, m8, m11, m13, m14)

 cd

ab

00

01

11

10

00 1 1

01 1 1

11 1 1

10 1 1

 Even function is a function that ONLY returns the

value ‘1’ when:
• n is even whereby n is the total number of input

signals with value ‘1’

 The invert of XOR of 3 or more input variables

makes an even function.
 E.g.

F(x, y, z) =(x y z)’ = ∑(m0, m3, m5, m6)

 = x’y’z’ + xy’z’ + x’yz’ + x’y’z

 yz

x

00

01

11

10

0 1 1

1 1 1

n = 2

n = 2

n = 2

n = 0

Derive the sum of minterms for the given

expression and its K-map:

F = (a  b  c  d)’

 cd

ab

00

01

11

10

00 1 1

01 1 1

11 1 1

10 1 1

If F1 = (a  b  c  d)

= ∑(m1, m2, m4, m7, m8, m11, m13, m14)

Then F = (a  b  c  d)’ = F1’

= ∑(m0, m3, m5, m6, m9, m10, m12, m15)

 Recaps…
• XOR of 3 and more inputs makes an odd function

• The invert of XOR of 3 and more inputs makes an even

function

 These properties of XOR are used to build

circuits to provide for error detection and

correction.

 This can be accomplished through parity

generator and checker.
• Parity generator: a circuit that produces parity bit(s) –

often resides at transmitter

• Parity checker: a circuit that checks the parity at receiver

A parity bit is an extra bit included in the

codeword to make the n (total number of ‘1’s)

either odd or even.

An even parity generator utilizes odd function

to make the number of ‘1’s even

 (vice versa).

 E.g.

x y z P

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

P = x y z = ∑(m1, m2, m4, m7)

Design a circuit for an odd parity generator P

for three input variable x, y, z. Derive the truth

table.

x y z P

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

P = (x y z)’ = ∑(m0, m3, m5, m6)

 If at the transmitter for every 3 data (x, y, z) bits,

1 parity (P) bit are constructed for every

codeword using even parity generator, then

the receiver must also be of an even parity

checker consists of four input variables (x, y, z

and P).

An even parity checker utilizes odd function to

make the number of ‘1’s even(vice versa).

 The output of the parity checker denoted by C

indicates:
• No error if C = 0

• Error if C = 1

 Example below describes a pair of parity

generator and checker:

• If 1100 is received; C = 0 no error.

• If 1101 is received; C = 1 ERROR!

Parity Generator:

P= x y z

Parity Checker:

 C= x y z  P

End of Module 8

